VIGET: A web portal for study of vaccine-induced host responses based on Reactome pathways and ImmPort data

Guanming Wu

Oregon Health & Science
University (OHSU)
Portland, Oregon

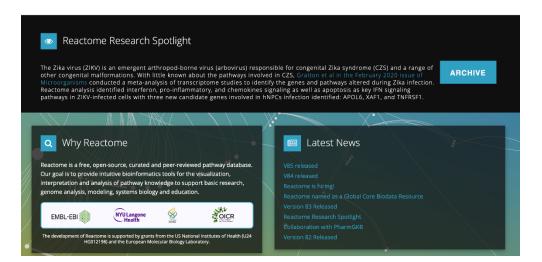
Yongqun "Oliver" He

University of Michigan

Medical School

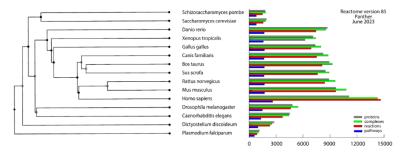

Ann Arbor, Michigan

Outline


- Introduction
- Development of VIGET
 - Data collection from ImmPort and GEO
 - Software Development
 - Major analysis and visualization features
- Live software demo
- Application cases

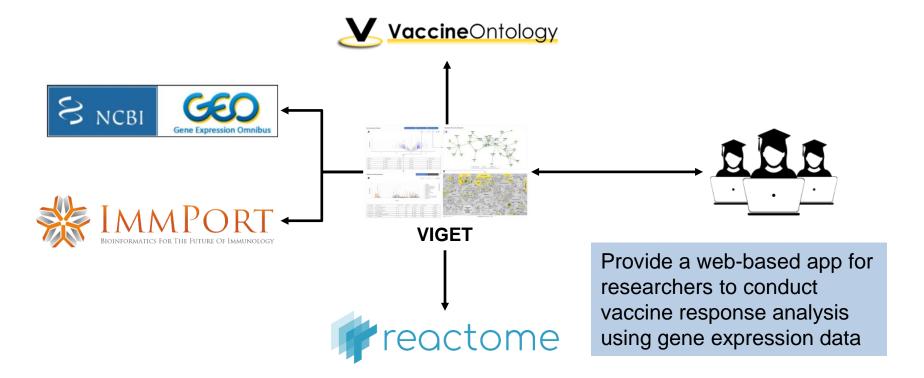
Project Goals

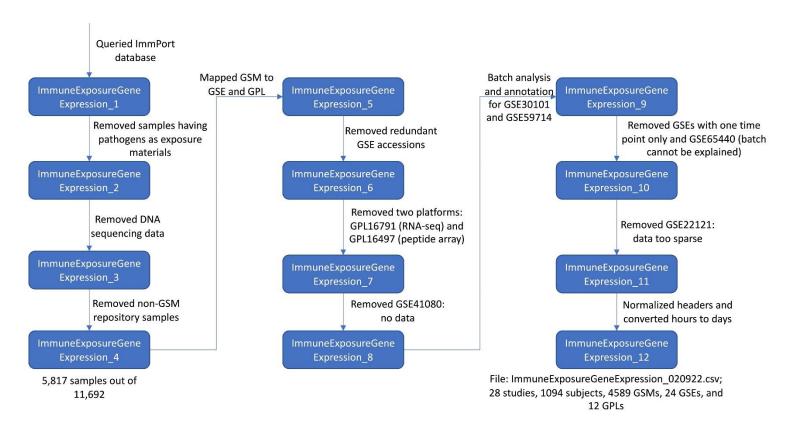
Reactome: an Open Source Pathway Knowledgebase



https://reactome.org

Reactome: an Open Source Pathway Knowledgebase

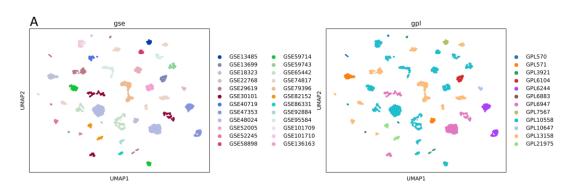

Statistics

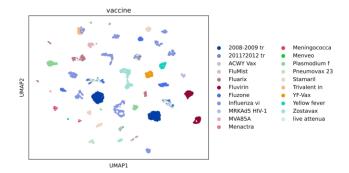

SPECIES	PROTEINS	COMPLEXES	REACTIONS	PATHWAYS
S. pombe	1772	1845	1494	822
S. cerevisiae	1925	1837	1574	817
D. rerio	8695	8525	7444	1686
X. tropicalis	7092	7392	6213	1589
G. gallus	7350	7991	6899	1714
C. familiaris	8221	8796	7514	1667
B. taurus	8905	9263	8123	1706
S. scrofa	8471	8902	7613	1670
R. norvegicus	8868	9582	8419	1712
M. musculus	9622	10794	9639	1725
*H. sapiens	11097	14277	14628	2629
D. melanogaster	4809	5446	4632	1487
C. elegans	4508	4432	3723	1317
D. discoideum	2782	2548	2328	991
P. falciparum	1147	1043	867	602

Supported by 36,600
PubMed indexed papers
manually annotated by
Reactome curators

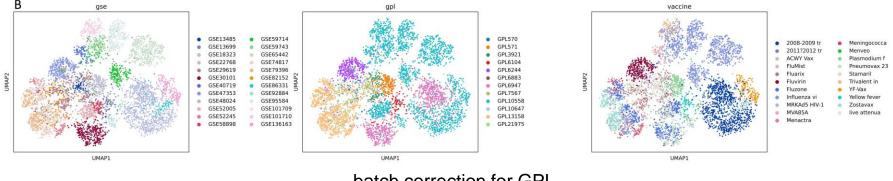
Project Goals

Workflow to Collect Vaccination Metadata From ImmPort and Manual Annotation

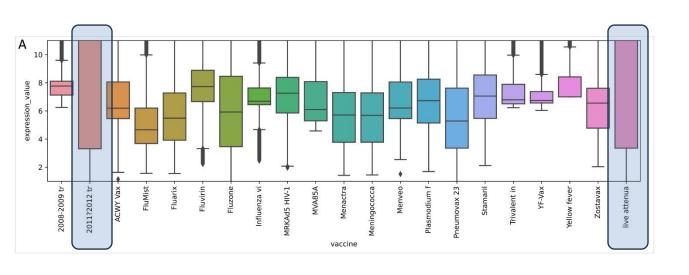

Statistics of the Vaccine Response Gene Expression Data Collected at VIGET


Object/Variable	Number/Value						
Vaccine	21 (by names) or 20 (by VO ids)						
ImmPort Study	28						
Race	7						
Min_Age	0						
Max_Age	90						
Min_Day	-7						
Max_Day	84						
Cell Type	4						
Cell Subtype	184						
Biosample (GSM)	4859						
GSE	24						
GPL Platforms	12						

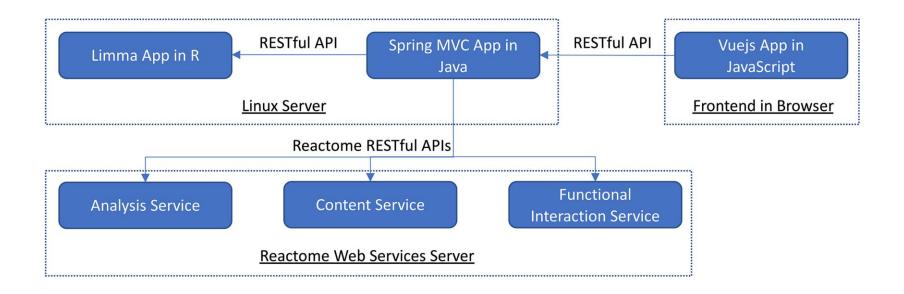
Vaccine Ontology Guided List


Vaccine	VO_ID	Category	Races	minAge	MaxAge	minDays	maxDays	Cell_Types	Cell_Subtypes	GSMs	GSEs	GPLs	Studies
2008-2009 trivalent influenza vaccine	VO_0004809	inactivated influenza vaccine	1	18.2	40.2	0	14	1	1	848	1	2	1
2011?2012 trivalent inactivated vaccine (A/California/7/09 (H1N1,), A/Perth /16/2009 (H3N2), and B/Brisbane/60/2008)	VO_0004810	inactivated influenza vaccine	3	0.5	13	0	30	1	1	64	1	1	1
ACWY Vax	VO_0003138	subunit vaccine	1	30	70	0	35	1	1	44	1	1	1
FluMist	VO_0000044	live attenuated influenza vaccine	3	0	47	0	7	1	5	127	1	2	1
Fluarix	VO_0000045	inactivated influenza vaccine	3	0	47	0	7	2	6	230	2	3	3
Fluvirin	VO_0000046	inactivated influenza vaccine	4	18	85	-7	70	1	176	292	1	1	1
Fluzone	VO_0000047	inactivated influenza vaccine	6	18	90	-7	28	3	1	417	3	3	3
Influenza virus vaccine	VO_0000642	viral vaccine	5	21	90	0	43	3	5	1189	6	2	5
MRKAd5 HIV-1 gag/pol/nef	VO_0003133	HIV Virus Vaccine	2	22	43	0	7	1	1	50	1	1	1
MVA85A	VO_0003120	Mycobacterium tuberculosis vaccine	1	18	55	0	7	1	1	96	1	1	1
Menactra	VO_0000071	Neisseria meningitidis vaccine	1	18	45	0	7	1	1	51	1	1	1
Meningococcal Polysaccharide Vaccine, Groups A & C, Menomune A/C	VO_0010725	Neisseria meningitidis vaccine	1	18	45	0	7	1	1	39	1	1	1
Menveo	VO_0001246	Neisseria meningitidis vaccine	1	30	70	0	35	1	1	15	1	1	1
Plasmodium falciparum vaccine	VO_0000087	malarial vaccine	1	18	65	0	79	1	1	254	1	2	1
Pneumovax 23 (USA)	VO_000088	Streptoccoal pneumoniae vaccine	3	22	49	-7	28	1	1	167	1	1	1
Stamaril	VO_0003139	Yellow Fever Virus Vaccine	2	18	45	0	28	1	1	196	2	2	2
Trivalent inactivated influenza	VO_0000642	inactivated influenza vaccine	3	22	90	0	41	1	1	79	1	1	1
YF-Vax	VO_0000121	Yellow Fever Virus Vaccine	1	19	49	3	84	1	1	144	1	1	1
Yellow fever 17D vaccine vector	VO_0000122	Yellow Fever Virus Vaccine	1	18	65	0	60	2	1	142	1	2	1
Zostavax	VO_0000124	Varicella-Zoster Virus Vaccine	6	25	79	0	7	3	1	344	2	2	3
live attenuated influenza vaccine	VO_0001178	Influenza Virus Vaccine	4	3	14	0	30	1	1	71	1	1	1

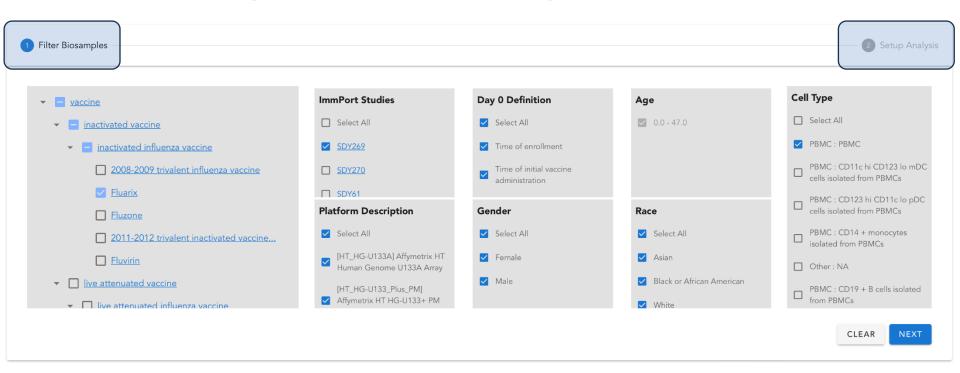
UMAP Plots of Samples: Batch Effect

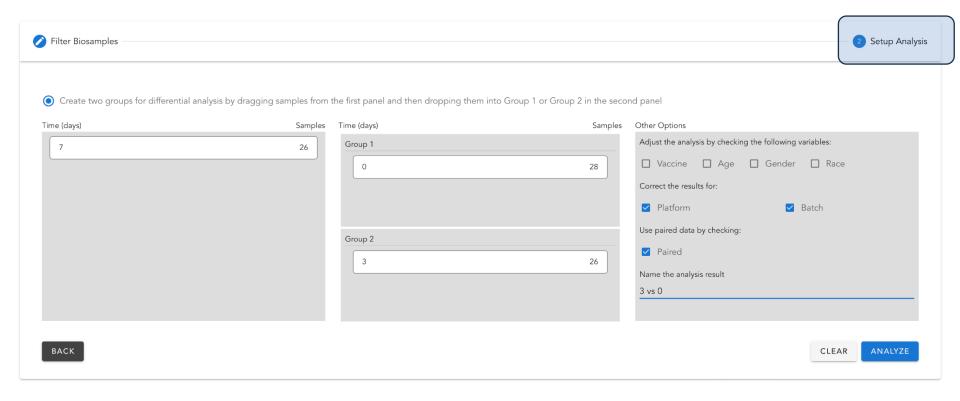


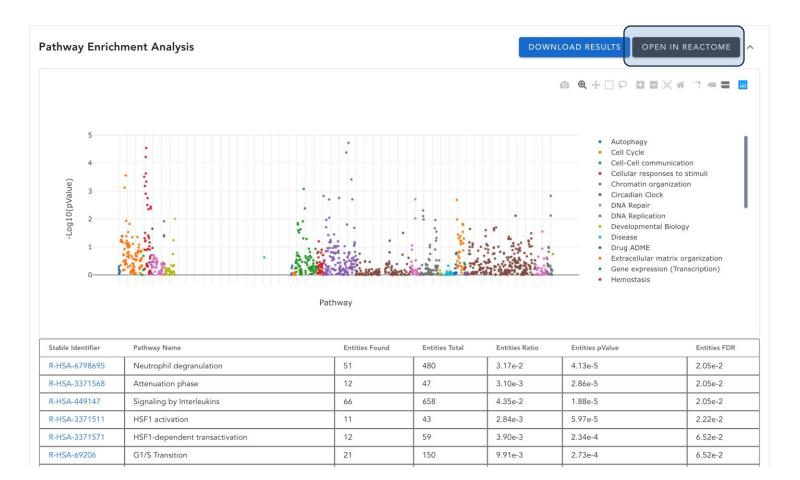
UMAP Plots of Samples: Batch Correction

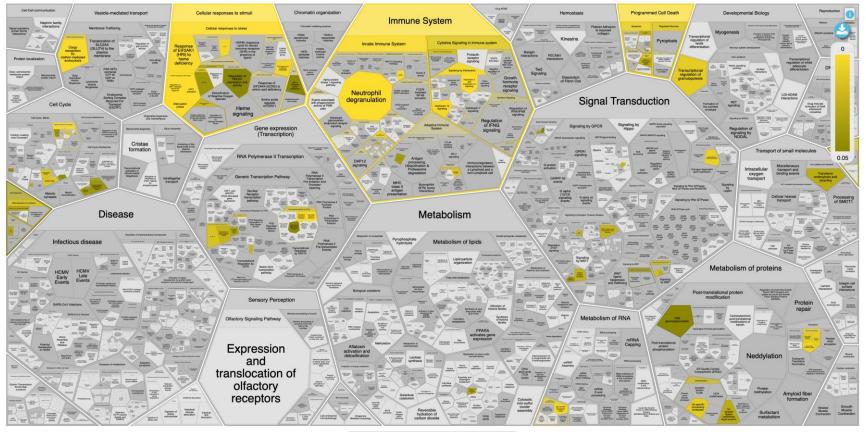


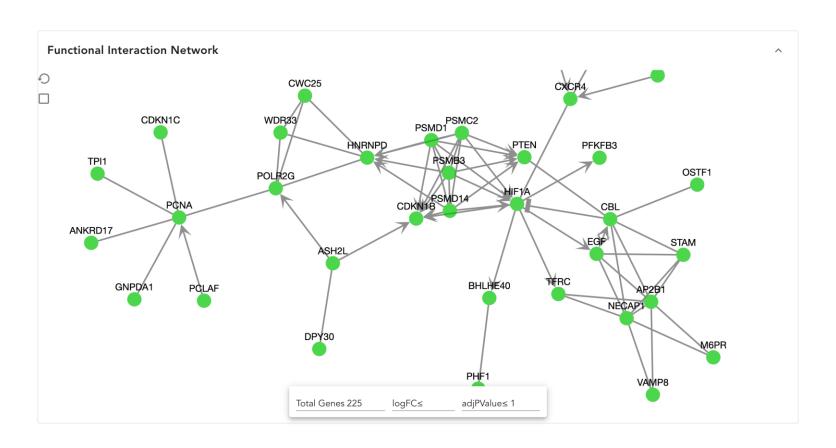
batch correction for GPL

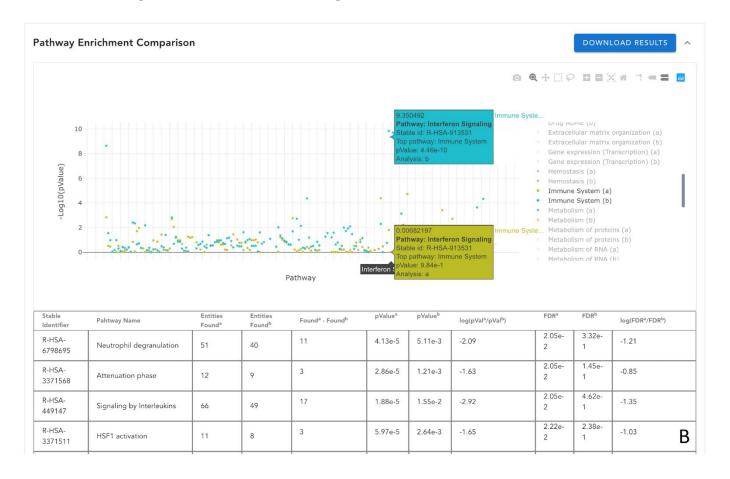

Boxplot of Expression Values of Individual Vaccines


Software Architecture of VIGET


Two-step Protocol to Setup Differential Gene Expression Analysis for Vaccine Response @ VIGET




Two-step Protocol to Setup Differential Gene Expression Analysis for Vaccine Response @ VIGET



Comparison Analysis Features @VIGET

3 vs 0 & 7 vs 3 ^ X **Descriptions** ^ 3 vs 0 (a) 7 vs 3 (b) Vaccines: Fluarix Vaccines: Fluarix Studies: SDY269 Studies: SDY269 Platform Descriptions: [HT_HG-U133A] Affymetrix HT Human Genome U133A Array, [HT_HG-U133... Platform Descriptions: [HT_HG-U133A] Affymetrix HT Human Genome U133A Array, [HT_HG-U133... Day 0 Definitions: Time of enrollment, Time of initial vaccine administration Day 0 Definitions: Time of enrollment, Time of initial vaccine administration Genders: Female, Male Genders: Female, Male Ages: 0.0 - 47.0 Ages: 0.0 - 47.0 Race: Asian, Black or African American, White Race: Asian, Black or African American, White Cell Type: PBMC: PBMC Cell Type: PBMC: PBMC Study Variables: None Study Variables: None Platform Correction: Yes Platform Correction: Yes Group 1 (Time: days): 0 Group 1 (Time: days): 3 Group 2 (Time: days): 3 Group 2 (Time: days): 7

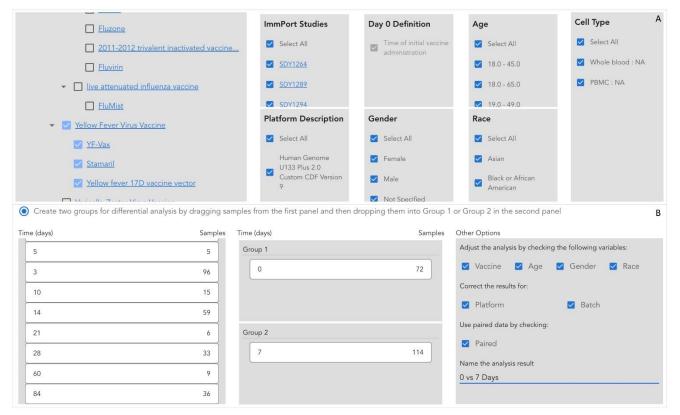
Comparison Analysis Features @VIGET

Project Links

- Web site: https://viget.violinet.org
- Paper: Brunson T, Sanati N, Huffman A, Masci AM, Zheng J, Cooke MF, Conley P, He Y and Wu G (2023) VIGET: A web portal for study of vaccine-induced host responses based on Reactome pathways and ImmPort data. Front.lmmunol.14:1141030. doi: 10.3389/fimmu.2023.1141030
- GitHub Repos
 - The source code for the web frontend app: https://github.com/VIOLINet/reactome-immport-web
 - The source code for the server-side application: https://github.com/VIOLINet/immport-ws
- Data: https://doi.org/10.5281/zenodo.7407195
 - ImmuneExposureGeneExpression_020922.csv: The meta file describing aggregated ImmPort studies and related vaccines, GEO information, and some manual annotation
 - Immport_vaccine_expression_matrix_mapped_merged_approved_genes_091421.csv: The aggregate gene expression data
- Open source and open access for both academic and commercial use: CC0 for data and CC BY 4.0 for Software

Software Demo

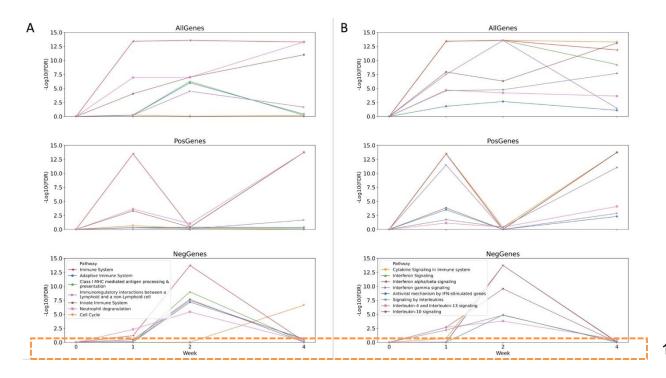
- 1. Perform a differential gene expression analysis
 - 1. Use Fluarix as an example
- 2. Conduct comparison analysis
 - 1. Fluarix response between 3 vs 0 days and 7 vs 3 days


Use VIGET to study vaccine responses to yellow fever vaccines

- Target: Longitudinal human responses to yellow fever vaccines
 - 4 ImmPort studies imported
 - 3 vaccines: YF-Vax, Stamaril, and Yellow fever 17D
 - Samples: 482, collected from whole blood or PBMCs.
 - Subjects: 18-65 years old, with Asian & African Americans, males & females.
 - Time: day 0 to day 84 post vaccination.
 - Focused: Immune profiles during the first 4 weeks post vaccination
- Reactome three categories of immune pathways focused:
 - Adaptive immune system
 - Innate immune system
 - Cytokine signaling in immune system
 - Rectome Immune system: https://reactome.org/PathwayBrowser/#/R-HSA-168256

Ref: Brunson T, Sanati N, Huffman A, Masci AM, Zheng J, Cooke MF, Conley P, He Y, Wu G. VIGET: A web portal for study of vaccine-induced host responses based on Reactome pathways and ImmPort data. *Frontiers in Immunology*. 2023. 14:1141030. PMID: 37180100 PMCID: PMC10172660.

VIGET application

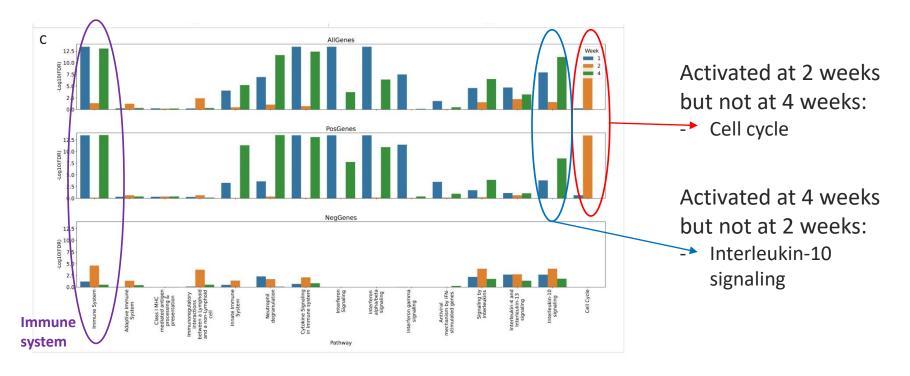

Use VIGET to study vaccine responses to yellow fever vaccines

Condition
Setup
For the
Use case

Fig. 3

Temporal Changes of Immune & Cytokine Signaling Pathways

Activated at 1 week:

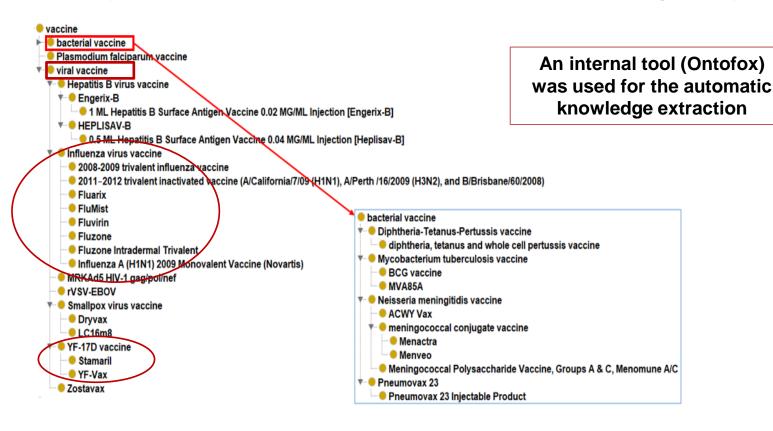

- Interferon α/β
- Interferon γ
- Innate immunity
 - Neutrophil degranulation

1st four weeks post vaccination

Temporal changes of major immune response pathways and cell cycle (Fig. 9A)

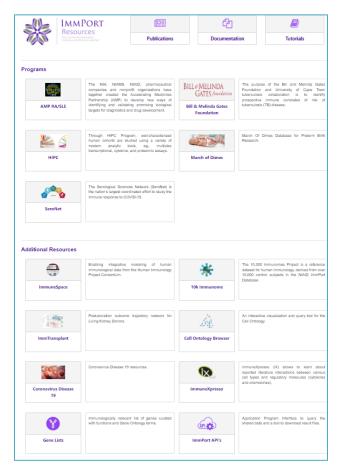
Temporal changes of **cytokine signaling pathways** (Fig. 9B)

Immune Response Pathways Enriched at 1-4 weeks post vaccination


Immune response pathways enriched for genes significantly differentially expressed at 1, 2, & 4 weeks post vaccination (Fig. 9C)

Summary

- VIGET: A web portal to study vaccine responses based on Reactome pathways and ImmPort data
- Use case: VIGET was used for analysis of human responses to yellow fever vaccine


Discussion

Vaccine Ontology (VO) IDs used in ImmPort has been used to automatically build up hierarchical structures, improving analysis

Future Work

- Possible inclusion of VIGET in ImmPort Resources
- Expand VIGET with more comprehensive and updated data
- Being used for more use cases
- Collaboration with ImmPort

https://www.immport.org/resources

Acknowledgements

University of Michigan:

- Anthony Huffman
- Edison Ong
- Oliver He

Oregon Health & Science University:

- Nasim Sanati
- Tim Brunson
- Patrick Conley
- Guanming Wu

Consultants:

- Jie Zheng (UPenn)
- Anna Maria Masci (Duke)

ImmPort Funding: 1UH2AI132931 (YH and GW)

This project was also supported by U24AI171008 (YH), NIH-NHGRI grant U41HG003751 (GW) and NIH-NCI grant U01CA239069 (GW).

