
ImmPort Contract

SYSTEM ARCHITECTURE AND
SOFTWARE DESIGN SPECIFICATION

Version 7.0
Updated Date: October 30, 2023

Project Sponsor:

National Institutes of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Division of Allergy, Immunology, and Transplantation (DAIT)

Prepared by:

Public Health Programs
2101 Gaither Road, Suite 500

Rockville, MD 20850
(301)527-6400 Main
(301)527-6401 Fax

Morgan.Crafts@peraton.com

Contents

1. INTRODUCTION 7
1.1. SCOPE 7
1.2. PURPOSE 7
1.3. BACKGROUND 7

2. IMMPORT TOOLS ON AMAZON WEB SERVICES 8
2.1. DATABASE ARCHITECTURE 9

2.1.1. OVERVIEW 9
2.1.2. Shared Data 9

2.1.2.1. Administrative 9
2.1.2.2. Study 10
2.1.2.3. Subject 11
2.1.2.4. Assessment 12
2.1.2.5. Lab Test 13
2.1.2.6. Experiment 14
2.1.2.7. Assay Results 14
2.1.2.8. Lookup Tables - Part 1 16
2.1.2.9. Lookup Tables - Part 2 18

2.1.3. Metric 19
2.1.3.1. Metric 19

2.1.4. Cell Ontology 19
2.2. HOSTED APPLICATIONS 19

2.2.1. ImmPort Shared Data 20
2.2.1.1. Feature Summary 20

2.2.1.1.1. Feature 1: Home Page 21
2.2.1.1.2. Feature 2: Search Bar and Results 22
2.2.1.1.3. Feature 3: Study Detail Page 23

2.2.1.2. Hardware and Software Architecture Components 24
2.2.1.3. Data Architecture 24
2.2.1.4. ImmPort Shared Data Server Architecture 25
2.2.1.5. ImmPort Shared Data Software Architecture 26

2.2.2. Study Search 27
2.2.2.1. Aggregated Fields 28
2.2.2.2. Boosting 28
2.2.2.3. Ngram search: 29
2.2.2.4. Phrase search 29

2.2.3. ImmPort Data Query API 32
2.2.3.1. Feature Summary 32
2.2.3.2. ImmPort Data Query API Server Architecture 33
2.2.3.3. ImmPort Data Query API Software Architecture 34

2.2.4. ImmPort Data Browser 35
2.2.4.1. Feature Summary 35

2.2.4.1.1. Feature 1: Home Page 36
2.2.4.1.2. Feature 2: Study Drill down 37
2.2.4.1.3. Feature 3: Aspera Connect Download 38

2.2.4.2. ImmPort Data Browser Architecture 38
2.2.5. ImmPort Data API 39

2.2.5.1. Feature Summary 39
2.2.5.2. ImmPort Data API Server Architecture 39
2.2.5.3. ImmPort Data Query API Software Architecture 40

2.2.6. ImmPort Resources 41
2.2.6.1. Feature Summary 41

2.2.6.1.1. Feature 1: Home Page 42
2.2.6.1.2. Feature 2: User agreement 43
2.2.6.1.3. Feature 2: Resources Page 43

2.2.6.2. SeroNet CDT 44
2.2.6.2.1. Introduction 44
2.2.6.2.2. Architecture 44
2.2.6.2.3. Feature Summary 44

2.2.7. ImmPort S3 API 46
2.2.7.1. Feature Summary 46
2.2.7.2. ImmPort S3 API Server Architecture 48

2.2.8. ImmPort CloudFront Distributions 48
2.2.9. Authentication of the Rest API - Resource Servers 48
2.2.10. Cell Ontology Browser 50

2.2.10.1. Cell Ontology Browser Architecture 51
2.2.11. ImmuneXpresso 52

2.2.11.1. ImmuneXpresso Architecture 53
2.2.12. Galaxy 53
2.2.13. ImmuneSpace 55
2.2.14. Metrics 55

2.2.14.1. A common data model for Metrics 55
2.2.14.2. Metrics Software Architecture 57
2.2.14.3. Visualizations in Kibana 57

2.2.14.3.1. Example of the Discovery tab 57
2.2.14.3.2. Example of the Visualization tab : 58

2.2.15. Utilization Report 59
2.2.16. ImmPort HAPI FHIR Server 59

2.3. Data Release 62
2.3.1. Overview of OCICB Components and Process 62
2.3.2. Overview of AWS Components and Process 65

2.4. Continuous Integration and Continuous Delivery (CICD) 66

3. ImmPort OCICB 67
3.1. OVERVIEW 67

3.1.1. Feature Summary 68
3.2. OCICB ARCHITECTURE 69
3.3. DATABASE ARCHITECTURE 70

3.3.1. CORE_IMMPORT 71
3.3.1.1. Overview 71
3.3.1.2. Workspace 71
3.3.1.3. Administrative 72
3.3.1.4. Study 73
3.3.1.5. Subject 74
3.3.1.6. Assessment 75
3.3.1.7. Lab Test 76
3.3.1.8. Experiment 77
3.3.1.9. Assay Results 78
3.3.1.10. Lookup Tables - Part 1 79
3.3.1.11. Lookup Tables - Part 2 80
3.3.1.12. Lookup Tables - Part 3 81
3.3.1.13. Lookup Tables - Part 4 82
3.3.1.14. Upload Registration 83
3.3.1.15. Curation 83
3.3.1.16. BISC Security 84

3.4. Aspera Server 84
3.5. HOSTED APPLICATIONS 85

3.5.1. ImmPort Core Query API 85
3.5.1.1. Feature Summary 85
3.5.1.2. ImmPort Core Query API Software Architecture 86

3.5.2. Data Submission 87
3.5.2.1. Validation 88
3.5.2.2. Submission 88

3.5.3. Data Batch Update 89
3.5.3.1. Validation 89
3.5.3.2. Submission 89

3.5.4. File System Management Update 90
3.5.5. Data Manager 92
3.5.6. Sharing Tool 92
3.5.7. User Administration 94

3.5.7.1. Registering User 94
3.5.7.2. Creating an User by an Administrator 95
3.5.7.3. Search User 97
3.5.7.4. Applications/Groups/Roles 97

3.5.8. APIs 98

3.5.8.1. Batch Uploader API 98
3.5.8.2. Batch Updater API 100

3.5.9. ImmPort Study Registration Wizard 101

1. INTRODUCTION

1.1. SCOPE
The scope of the ImmPort contract is to provide advanced information technology support in
the production, analysis, archiving, and exchange of scientific data for a diverse community of
life science researchers.

1.2. PURPOSE
The Immunology Database and Analysis Portal (ImmPort) applications are being developed
by a Peraton-led team. Previous development was performed by the same team under
Northrop Grumman Information Systems (NGIS) with academic partners from the University
of California San Francisco in the current contract (phase 2 and 3) and the University of
Texas-Southwestern in the prior phase 1 contract. The ImmPort system is intended to serve as
a long-term, sustainable archive of data generated by investigators funded through the
Division of Allergy, Immunology, and Transplantation (DAIT) of the National Institute of
Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH). The ImmPort
system consists of an extensive data warehouse containing an integration of experimental and
clinical data supplied by NIAID/DAIT-funded investigators. The ImmPort system is freely
accessible as a resource to all scientists in the research community.

This System Architecture and Software Design Specification (SASDS) defines the overall
ImmPort architecture and software design specification identified by the Peraton ImmPort
Team (hereinafter referred to as the ImmPort Team) for the ImmPort system developed for
NIAID/DAIT. The architecture and design described in this document focus on the
capabilities that are implemented in the ImmPort family of applications as of June 30, 2021.

1.3. BACKGROUND
The key objective of the SASDS version 6.0 is to provide an update to the hardware and
software specifications of the system. The ImmPort project has evolved, such that systems
are now hosted in a production or near-production mode at both the NIAID hosting facility as
well as Amazon Web Services (AWS) cloud environment. In general, the long-term goal,
which is in progress, is to provide hosting of data while it is private and being QC'ed and
curated in ImmPort related applications housed at the NIAID hosting facility. When data is
shared with the general scientific community, data would be transferred to AWS for easier
re-use of these data for analysis, or in short, to bring the data to the analysis tool. This
bifurcation of systems allows ImmPort and NIAID staff to maintain maximum control over
data while it is sensitive and private, and more flexibility for re-use and distribution when the
data is shared in AWS.

The ImmPort contract includes a shift in focus to lessen the level of effort spent on the
development, maintenance, and outreach for analysis tools and reference data capabilities.
The FLOCK flow analysis tool suite continued to have constant usage and increased interest
and publications related to tool usage and results, so the decision was made to continue
support of that application. As a result of these decisions, the retired tools and queries will not
appear in this design document.

For the remaining features of ImmPort, it was recognized a general code refresh was
necessary given the overall age of the software and supporting stack of frameworks. As a
result, the ImmPort team progressed incrementally through the upgrade of features into a new
software architecture detailed in this document. For the purposes of this document, newer
code architecture is referred to as "ImmPort 3.0", while the prior architecture being gradually
replaced is referred to as "ImmPort 2.0". This document will detail the ImmPort 3.0
architecture for features that have been upgraded or will soon be upgraded and will keep the
existing documentation in place for ImmPort 2.0 features not yet upgraded in the production
environment. As features are completed, this document will be accordingly updated. The
functional requirements documents for features in progress for the upgrade will also be
available and referenced in this document.

Compared to prior versions of this document that detailed ImmPort 2.0 architecture, the
overall system architecture for ImmPort 3.0 is being simplified to have a less dense
middle-tier. As a result, the need to document detailed design packages in this SASDS is
reduced, since the same middle-tier approach is utilized across the features in a given
application and the EJB tier has been removed.

The database documentation has been moved online, so is no longer described in detail in
this document. References to the freely available online materials will be provided in this
document. Far more detail about the database fields, tables, and ERD diagrams are available
online than in prior versions of the SASDS, so the overall amount of information has
increased markedly. Additionally, since the SASDS document was released the entire
database in MySQL is available for anyone to download and re-use, making comprehension
of the database architecture much simpler.

This document is to be considered a “work in progress” and will evolve during the life of the
ImmPort effort as additional requirements are implemented, new requirements are identified,
and others are modified or deleted.

2. IMMPORT TOOLS ON AMAZON WEB SERVICES

The ImmPort tools deployed on Amazon Web Services (AWS) are designed primarily to
1. Identify studies of interest for users to evaluate for future analysis. The application

performing this feature is ImmPort Shared Data.
2. Download studies of interest. The application performing this feature is ImmPort Data

Browser.
3. Provide a unified platform for several ImmPort resources such as documentation,

tutorials, upload templates, example packages, blogs. The application performing this
feature is ImmPort Portal.

In addition to the above applications, the AWS infrastructure is utilized to develop Alpha and
Beta tools to obtain feedback on utility from the user community. Tools such as
ImmuneXpresso and the Cell Ontology browser fit into this category. Finally, the AWS
infrastructure is being used to host production applications developed by other research teams
funded by DAIT without the funding to support a federal system. ImmuneSpace is the first
example of this usage of ImmPort resources.

2.1. DATABASE ARCHITECTURE

2.1.1. OVERVIEW

Currently ImmPort has 3 databases instantiated in the production environment, 2 use Aurora
MySQL databases, and the third (Ontology) uses a local MySQL installed on an Ubuntu
server. The plan is to move the Ontology database to the Aurora MySQL in the next year.
1. Shared_Data - read-only, data that has been shared to the public
2. Metric - read/write metric from the various applications is logged to this database
3. Ontology - read-only, contains data to support the Cell Ontology browser

2.1.2. Shared Data

The Shared_Data database contains all the data shared for public access as part of the Data
Release process. The Data Release process occurs approximately 4 to 6 times per year.
Between releases, data remains static and accessed primarily using read-only api. With each
release, we create a new database, named DRXX_SHARED_DATA, and at the time of the
Data Release, the connection string for the applications is updated to use the new version of
the Shared_Data database.

2.1.2.1. Administrative

This diagram represents the tables used to capture Program and Contract information.
Several contracts can be linked to one Program and one or more studies can be linked to
each contract.

2.1.2.2. Study

This diagram represents information for the overall design of the study. The arm_or_cohort table is used
to link studies to subjects using the arm_2_subject table. The study_file table is used to link various
types of files, uploaded by data providers, where the file contents may or may not be structured. Examples
of file types uploaded are Case Report forms, generic study data, lab results, assessments, etc. Some of
these files may be parsed and loaded into tables like assessment/assessment_component and
lab_test_panel/lab_test. Assay result files are not normally loaded into the study_file table but are stored
in the file_info table and usually associated with an expsample record. The
study_2_condtion_or_disease table supports associating one or more conditions/diseases to a study. The
terms for the conditions/diseases are in the lk_disease table, which uses the Disease Ontology and Human
Phenotype Ontology, as the source for the terms. The study_categorization table provides a method to
link a study to broad research focus areas. Examples of research focus areas are Immune Response,
Vaccine Response, Transplantation, etc.

2.1.2.3. Subject

These tables contain subject-level information. A subject may be linked to one or more studies via the
arm_2_subject table. The arm_2_subject allows the data model to capture the age of the subject at the
time of each study. This is important when individual studies are part of a larger longitudinal study and
the time frame can span several years. The biosample table represents the material obtained from the
subject at a specific point in time. For example, if the protocol called for obtaining a blood sample on
Day1, Day 7, and Day28, there would be 3 biosample records for each subject.

2.1.2.4. Assessment

Individual assessment_component records can be grouped together as a unit, using the
assessment_panel record. For example, an assessment_panel record may represent a questionnaire
filled out by a subject, and each of the 20 questions on the questionnaire is represented by 20
assessment_component records. Subject records are linked directly to assessment_component
records, which is different from biosample records which are linked to lab_test records. The reason
subject records are linked directly to an assessment is an assessment can occur without a biological
specimen being collected, for example when filling out a questionnaire. Assessment_component
records are linked to a planned_visit record, and the planned_visit record captures the temporal
aspects of when the assessments were made.

2.1.2.5. Lab Test

Individual lab_test records can be grouped as a unit using the lab_test_panel record. For example, a
lab_test_panel record may represent a group of chemistry tests made on a single blood sample and
each of the 10 tests that make up the chemistry test panel are represented by 10 lab_test records.
Biosample records are linked directly to lab_test records. The biosample records are also linked to a
planned_visit record, and the planned_visit record captures the temporal aspects of when the
biosample was obtained and when lab tests were performed.

2.1.2.6. Experiment

The experiment table represents assays performed using multiple expsample records. Types of assay
methods (measurement_techique) are ELISA, ELISPOT, PCR, Flow Cytometry, etc. The expsample
record is obtained from the biosample record, in some experiments, the original biosample may have
been divided into multiple expsamples, with each expsample used for a different assay method. If the
original assay result file has been uploaded by the data provider, the expsample record is linked to the
record in the file_info table, via the expsample_2_file_info table.

2.1.2.7. Assay Results

For common assay methods where result formats are fairly standardized the results are parsed into the
result table for that assay method is supplied by the data provider. In the Shared_Data schema, when
this information is extracted from the production operational database, several properties are
denormalized into these tables to make them easier to use in downstream analysis. In the production
database, the base table normally has only the experiment_accession and expsample_accession.

2.1.2.8. Lookup Tables - Part 1

There are approximately 45 tables in the Shared_Data schema that ImmPort identifies as lookup tables,
but others may refer to them as controlled vocabulary tables. These tables are used to harmonize data
from a study to study. For many of the base tables, ImmPort has both a reported_name and a
preferred_name with the preferred name mapped to one of the lookup tables. In addition, several lookup
tables are populated using terms from ontologies. Examples of the ontologies used are

1. Vaccine Ontology
2. Disease Ontology
3. Human Phenotype Ontology
4. Uberon Anatomy Ontology
5. Clinical Measurement Ontology
6. Cell Ontology
7. Protein Ontology
8. Gene Ontology
9. IPD-IMGT/HLA
10. NCBI Taxonomy
11. Ontology Biomedical Investigation

2.1.2.9. Lookup Tables - Part 2

2.1.3. Metric

2.1.3.1. Metric

2.1.4. Cell Ontology

The three tables in this database represent information parsed from the cl.obo file. The cell_term table
captures base information for all cell terms. The cell_synonym table contains names used for a cell
term. The information in cell_term and cell_synomym are merged and the content is indexed using
ElasticSearch to support the search capability in the application and is displayed in cell detail pop-ups
on hover in the application. The cell_graph table supports the generation of the force-directed graph
displayed in the application which shows the relationship between cell terms.

2.2. HOSTED APPLICATIONS

2.2.1. ImmPort Shared Data

ImmPort Shared Data is the application utilized by researchers to identify studies of interest
for further exploration and analysis. As of December 31, 2020, 462 studies have been shared
and cataloged in ImmPort Shared Data. Currently, no row-level results are viewable from
within ImmPort Shared Data with the advantage that no user authorization is required.
Viewing row-level data would require authorization/user login. ImmPort Shared Data
utilizes a standard suite of Linux-based AWS servers and components described below and a
Spring/Java and Angular web application architecture.

2.2.1.1. Feature Summary

Table 2.4.1.1-1 below summarizes the major functionality of ImmPort Shared Data.
Table 2.4.1.1-1: Summary of ImmPort Capabilities and Features

Capabilities/Features Capability/Feature Description
1 Search for Studies Allows users to perform a “Google-like” search to identify shared studies of interest. Text

entered by the user is searched against an index of the entire set of metadata stored in the
ImmPort database.

2 View/Filter Query Results After an initial search, users are presented with a list of studies, summary information about
each study, and the search hits. From here users may use facets on the left-hand panel to further
filter studies returned by categories of data such as assay method, species, sample type, etc.

3 View Study Details Once a study of interest is identified, users are able to view extensive metadata and
summary data about the study.

4 Visualize Summary Data For selected aspects of the study data such as demographics, users are can filter and visualize
data in standard plots such as bar charts by factors such as gender, ethnicity, and arm

5 Link to download data For a given study, users can click to download the raw study data and are redirected to log in to
the Data Browser application at NIAID.

6 View Reference and Static
content

Static content such as tutorials, curated cytokine lists, system documentation, user
documentation and ImmPort project information are hosted on the ImmPort Shared Data
site.

2.2.1.1.1. Feature 1: Home Page

The ImmPort Shared Data home page provides the entry-point into ImmPort Shared Data. Beyond being
an information page containing announcements and ImmPort background information, users can right
away begin searching and filtering for studies of interest. In addition, studies that may be of interest to
the user community are highlighted in the slider bar based on factors such as recent publications, the
popularity of the study based on views or downloads, and recent additions to the shared ImmPort content.

2.2.1.1.2. Feature 2: Search Bar and Results

Once the user has selected to view either all or a subset of studies a list of studies is presented as shown
below. The page layout is a familiar design with faceted search capabilities illustrated in the left-hand
panel, and a “Google-like” simple text search bar at the top. From this page, users may either select a
study to view more details, filter the study list further based on facets, click to view a larger version of
the study schematic graphic or click to download the study data. Clicking the Download button directs
the user to the Data Browser application in the directory for that study after authentication.

2.2.1.1.3. Feature 3: Study Detail Page

When a study is selected, the user is presented with a study detail page. Within this page, there are
multiple tabs presented with different aspects of study data based on what has been provided. The full set
of tabs that may be displayed include

● Summary: title, description, PI, type, arms/cohorts, study schematic
● Study Design: study timeline, inclusion and exclusion criteria, schedule of events
● Adverse Event: summary of adverse event data by severity, name, arm
● Assessment: summary of assessments taken
● Interventions: summary of interventions performed
● Medications: concomitant medications taken
● Demographics: summary information about gender, age, ethnicity
● Lab Tests: summary of laboratory panels and tests
● Mechanistic Assays: summary of assays performed, protocols, platforms, reagents, treatments
● Study Files: catalog of study data files provided

2.2.1.2. Hardware and Software Architecture Components

Table 2.4.1.2-1 below describes the hardware components and software components that constitute
the architecture of ImmPort Shared Data.

Table 2.4.1.2-1: Hardware and Software Architecture Components

Component Name
JavaScript Object Notation
(JSON)

A lightweight, human-readable data-interchange format widely used in web
applications and web-based API’s.

Spring Boot Provides a ready to start Spring-based application deployment that utilizes best
practices for the configuration (http://projects.spring.io/spring-boot/)

Spring Web MVC Provides model-view-controller architecture (MVC) and components to develop flexible
and loosely coupled web applications in the Spring family of components

AWS Aurora A widely used open-source relational database system now owned by Oracle
corporation. www.mysql.com

Angular 8+ A popular environment with interactive components for developing dynamic web-based
applications using AJAX/JavaScript developed by Google but open source.
https://angularjs.org

AWS ElasticSearch Popular open source enterprise search platform built on Apache Lucene™ utilizing Apache
Tomcat as the servlet container (lucene.apache.org)

Google Analytics Web monitoring tool framework provided by Google.

Amazon Web Services (AWS) Amazon Web Services (AWS) provides cloud infrastructure and a wide array of server
capabilities for developers to build production applications. (aws.amazon.com)

Elastic Compute Cloud (EC2) Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides resizable
compute capacity in the cloud, designed to make development easier through ease of
server creation, duplication, and shutdown along with providing a suite of configuration
options for hardware and software/OS specifications.

Virtual Private Cloud (VPC) Allows administrators to provision a logically isolated section of the AWS cloud where AWS
resources can be created and launched in a customized virtual network

Simple Storage Service (S3) Provides secure, durable, highly-scalable cloud storage.

Relational Database Service
(RDS)

Provides pre-configured database servers for Oracle, SQL Server, PostgreSQL, MySQL,
and MariaDB where AWS performs the database administration allowing the
development team to focus energies on application-specific details and development.

2.2.1.3. Data Architecture

Data used by the ImmPort Shared Data application is stored and retrieved using multiple technologies.
Primarily data is stored in an AWS Aurora MySQL database. The Shared Data schema maps closely to
the Oracle production operational database but has been partly de-normalized to optimize query
performance and to support the Data Query API. The database contains all information for all studies
shared for public access.

An AWS ElasticSearch index is used to support free text and faceted searching of study information and
to support site search. The content index is updated with each quarterly release. ImmPort also uses AWS
S3 buckets to host content generated as part of the Data Release process and remains static for each
release.

An overview of the ImmPort Shared Data model is available on the website on the Data Model page. The
table and column documentation is available on the website on the Relational Database page.

http://projects.spring.io/spring-boot/)
http://www.mysql.com/
https://immport.org/shared/dataModel
https://www.immport.org/shared/dataModelDocumentation?table=study

2.2.1.4. ImmPort Shared Data Server Architecture

ImmPort Shared Data, on AWS, is separated into its own private network or VPC. The outward-facing
Tomcat web server is contained in a public subnet where the site www.immport.org is directed while data
servers are contained in a private subnet only available through the NAT EC2 server within the public
subnet. This separation limits exposure to security threats in the data tier of ImmPort Shared Data. The
configuration follows the AWS recommendations described at
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html

http://www.immport.org/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html

2.2.1.5. ImmPort Shared Data Software Architecture

ImmPort Shared Data is a standard Java Spring-based web application. The client layer utilizes
JavaScript AJAX frameworks such as JQuery and Angular to provide interactive graphical user
interfaces. The Model, View, and Controller uses Spring Web MVC with Tiles/JSP to layout the web
pages. Hibernate provides the data and persistence layer to the MySQL relational database via JDBC.
Queries against SOLR are run through the web service connecting to the SOLR Tomcat server.

2.2.2. Study Search

2.2.2.1. Fields
When a word is entered in the study search box. The following fields are searched:

study_accession^200,
study_accession.ngram^100,
brief_title^150,
brief_title.ngram^100,
brief_description^100,
brief_description.ngram^30,
description^10,
description.ngram^5,
doi^100,
doi.ngram^30,
endpoints^50,
endpoints.ngram^20,
hypothesis^50,
hypothesis.ngram^20,
objectives^50,
objectives.ngram^20,
official_title^75,
official_title.ngram^20,
sponsoring_organization^50,
sponsoring_organization.ngram^20,
research_focus^5,
arm_or_cohort_all^5,
arm_or_cohort_all.ngram^2,
biosample.type^5,
contract_grant.name^5,
contract_grant.name.ngram^2,
contract_grant.external_id^5,
program.program_name^5,
program.program_name.ngram^2,
condition_preferred^50,
condition_preferred.ngram^20,
condition_reported^50,
condition_reported.ngram^20,
experiment_all.ngram^2,
pubmed_all.ngram^2,
personnel_all.ngram^2,
elisa_result_all.ngram^2,
elispot_result_all.ngram^2,
fcs_analyzed_result_all.ngram^2,
hai_result_all.ngram^2,
hla_typing_result_all.ngram^2,
kir_typing_result_all.ngram^2,

mbaa_result_all.ngram^2,
neut_ab_titer_result_all.ngram^2,
pcr_result_all.ngram^2,
reagent_all.ngram^2,
adverse_event_all.ngram^2

2.2.2.1. Aggregated Fields

The fields ending with “_all” is a collection of the data of all the fields in that category. For example pcr_result_all is
the data from the following fields:

pcr_result.gene_id
pcr_result.gene_name
pcr_result.gene_symbol_preferred
Pcr_result.gene_symbol_reported

2.2.2.2. Boosting

Individual fields can be boosted with the caret (^) notation. Matches on the study_accession (boost : 200), brief_title
(boost : 150), brief_description (boost : 100),official_title (boost : 75) have more relevance than the other fields since
their boost factor is more. Example: If you search for the word “Monoclonal”,

SDY1 gets the highest score because the word “Monoclonal” was found in brief_title (150) and official_titile (75)
both have a high boost value.
SDY524 - has the second-highest score since the word “Monoclonal” was found in brief_description (100)
SDY1544 and SDY56 come later since Objectives (50) and EndPoints (50) have lower boost values

2.2.2.3. Ngram search:

Ngrams helps to search whether a term belongs to a word fully or partially. For example, if you search for “microbial”

SDY148 - anti-microbial (partial)
SDY1162 - microbial (full)
SDY857 - antimicrobial (partial)

2.2.2.4. Phrase search

If a phrase is searched without the double quotes then the results will use the best_fields type search. The best_fields
type is most useful when you are searching for multiple words best found in the same field. For instance “brown fox”
in a single field as a phrase is more meaningful than “brown” in one field and “fox” in the other and “brown” and
“fox” separated by other words in a single field. For example, if the phrase is ‘clinical islet transplantation’ , 170
studies were found since first the studies with the phrase is found and then individual words are searched

SDY1432 came up first since clinical islet transplantation was found in brief title(boost value 150)

SDY1544 came up ninth since clinical islet transplantation was found in contract grant name(boost value 5)

SDY960 came up 10th since the phrase was tokenized by space. And the tokenized words were found in fields.
For example, if the phrase is ‘Ad35.CS.01’ is tokenized and then searched.
If a phrase is searched with the double quotes then the results will use the phrase_prefix type search. The whole
phrase will be found in the fields For example if the phrase is “clinical islet transplantation”, 8 studies were found. If
‘‘Ad35.CS.01’ is searched with double quotes only one study shows else 18

2.2.3. ImmPort Data Query API

The Data Query API provides programmatic access to ImmPort Shared Data. This API works as a query tool to access
ImmPort descriptive data (metadata) and interpret results for assays such as ELISA, ELISPOT, MBAA (Luminex),
HAI, Neutralizing Antibody Titers, HLA and KIR typing, QPCR, flow and mass cytometry-based on various input
filter parameters. The API returns a JSON output by default. A tab-separated output can also be returned if format=tsv
is passed as a parameter to the specified endpoint. The HTTP method supported by this API is GET for this version of
this API.

Data Query API endpoints can be accessed directly by a user or by an application. The ImmPort Shared Data
application uses some of the endpoints to get data for the search and study detail pages. All requests to the Data
Query API require authentication and the Data Query API uses tokens for authentication. Users can obtain tokens by
posting to the ImmPort Authentication URL- https://auth.immport.org/auth/token with their username and password.
They must include the authentication token as an Authorization: bearer in the custom HTTP header.

2.2.3.1. Feature Summary

This link documents the endpoints of the API https://docs.immport.org/#API/DataQueryAPI/dataqueryapi/

https://auth.immport.org/auth/token
https://docs.immport.org/#API/DataQueryAPI/dataqueryapi/

2.2.3.2. ImmPort Data Query API Server Architecture

The ImmPort Data Query API is hosted in AWS on an EC2 instance in the public subnet. The data servers are
contained in a private subnet only available through the NAT EC2 server within the public subnet. This separation
limits exposure to security threats in the data tier of ImmPort Data Query API. The configuration follows the AWS
recommendations described at http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenario2.html

2.2.3.3. ImmPort Data Query API Software Architecture

ImmPort Data Query API is a Spring Boot application using Spring JPA which makes it easier to build
Spring-powered applications that use data access technologies. It also exposes a study search endpoint that calls a
method on the service layer. The service layer builds the elastic search queries based on the parameters sent to the
endpoint and then queries the AWS ElasticSearch service that has a study index that contains study JSON files. The
Model, Repository, and Service Layers are different java applications. The API layer depends on these applications
and packages them during the build process into a single jar file.

2.2.4. ImmPort Data Browser

The Data Browser is a web-based application with the use of similar web frameworks as ImmPort Shared
Data described previously. The interactive UI is handled by Angular components using AJAX and
JavaScript, while the MVC architecture is implemented in Spring. Aspera Security is utilized when calls are
made to download content on the data files and directories identified in the Aspera Node Server. The Aspera
Connect Server governs interactions with the data files and directories via the Aspera Connect Client.

2.2.4.1. Feature Summary

Table 2.4.4.1-1 below summarizes the major functionality of ImmPort Data Browser.
Table 2.4.4.1-1: Summary of ImmPort Capabilities and Features

Capabilities/Features Capability/Feature Description
1 Browse Study Files Allows users to browse the shared data study files and packages that are available to download

in the current data release

2 Download Study Files/Packages Allows users to select and download study files packages from the latest data release.

3 Download archive Allows users to download study files from the older versions that are moved into the
archives directory.

2.2.4.1.1. Feature 1: Home Page

The Data Browser home page provides a list of studies and files available to download in the latest data
release. Users can browse through the list of studies and can select a study directory or pick files across
studies to download.

2.2.4.1.2. Feature 2: Study Drill down

Users can drill down into each study to select individual files and packages to download. An example
snapshot of data available in each study is below.
Example: SDYxx-DRxx_MySQL.zip is a MySQL dump of the study SDYxx in data release DRxx
Similarly, tab-separated files packaged as a zip file are available to download for each study.
Each study has an archive directory where previous versions of the study can be found. If a user is
looking for a study in a particular data release it can be found in the archives directory.

2.2.4.1.3. Feature 3: Aspera Connect Download

The ImmPort data browser allows users to download ImmPort data by individual file, directory, or study. The data
browser uses a software tool called Aspera Connect to transfer files from ImmPort to users. This software works
with the user’s internet browser to quickly and securely transfer files. Aspera Connect requires data downloaders to
install the Aspera Connect Client Plugin onto their computer where the files will be downloaded. The Aspera
Connect plugin can be downloaded directly through the ImmPort data browser. Here are the instructions for the
Aspera Connect Installation https://www.immport.org/installAsperaHelp

Alternatively, the installation files and documentation for the plugin can also be found here
http://downloads.asperasoft.com/connect2/

2.2.4.2. ImmPort Data Browser Architecture

https://www.immport.org/installAsperaHelp
http://downloads.asperasoft.com/connect2/

2.2.5. ImmPort Data API

The ImmPort Data API is used by the ImmPort Data Browser to browse and download ImmPort shared data on the
Aspera Production Server at NIAID. It is also used by ImmPort users who wish to programmatically browse and
download ImmPort shared data after obtaining an ImmPort token.

ImmPort Data API allows users to browse and download files and directories on an Aspera Server and to create
content listing files for these files and directories (all via POST requests only). ImmPort Data API endpoints are
protected and require an ImmPort token to access. ImmPort Data Api fetches an Aspera token internally to talk to the
Aspera Server to download the files.

2.2.5.1. Feature Summary

Following are the endpoints available in ImmPort Data API

https://api.immport.org/data/content/listing/information
gets the name of the content listing directory and the start
and end times of the content listing file generation.

https://api.immport.org/data/content/listing/creation
creates files containing the content listings sorted
alphabetically, by size, and by last modification date in both ascending
and descending order for each directory.

https://api.immport.org/data/content/listing/report
Returns a a JSON report of the content listing creation

https://api.immport.org/data/list
takes a list of files and directories and downloads them from the aspera server as
a zip package.

https://api.immport.org/data/download/token
Returns an aspera download token

https://api.immport.org/data/download/specification
Returns an aspera download specification

2.2.5.2. ImmPort Data API Server Architecture

The ImmPort Data API is hosted on an EC2 instance in the public subnet on AWS. The Aspera server is hosted on the
NIAID On-premises infrastructure.

https://api.immport.org/data/content/listing/information
https://api.immport.org/data/content/listing/information
https://api.immport.org/data/content/listing/information
https://api.immport.org/data/content/listing/information
https://api.immport.org/data/content/listing/information
https://api.immport.org/data/content/listing/information

2.2.5.3. ImmPort Data Query API Software Architecture

ImmPort Data API is a Spring Boot application with a service layer containing a Content Service for listing and
downloading ImmPort shared data using the Aspera Node API.

2.2.6. ImmPort Resources

ImmPort Portal is a static web application that hosts all static web pages required across ImmPort web applications.

2.2.6.1. Feature Summary

Table 2.4.6.1-1 below summarizes the major functionality of ImmPort Data Browser.
Table 2.4.6.1-1: Summary of ImmPort Capabilities and Features

Capabilities/Features Capability/Feature Description
1 Static page All static web pages required across all ImmPort applications

Ex: Home page, user agreement page, Aspera installation instructions, etc.,

2 ImmPort Tutorials Hosts several ImmPort tutorials and the instructions to use them

3 ImmPort Documentation Data Upload and templates documentation

2.2.6.1.1. Feature 1: Home Page

The ImmPort home page is the landing page of the ImmPort Ecosystem and hosts several links to various
ImmPort applications

2.2.6.1.2. Feature 2: User agreement

ImmPort is a data sharing and data analysis portal for the immunology research community funded by
the National Institute of Allergy and Infectious Diseases (NIAID), Division of Allergy, Immunology, and
Transplantation (DAIT). Users will be asked to accept the terms and conditions of this agreement without
exception when they log in to ImmPort.

2.2.6.1.3. Feature 2: Resources Page

ImmPort Portal also hosts links to several ImmPort resources like ImmuneXpresso, Cell Ontology, ImmuneSpace,
10K Immunome etc.,

2.2.6.2. SeroNet CDT

2.2.6.2.1. Introduction

Purpose: A Resource Study catalog of SeroNet studies with faceted search capability

Worked with the SeroNet team on defining the JSON structure needed for building the OpenSearch index
● Developed software program to extract data from the SeroNet registry template into the JSON structure
● Developed SeroNet specific Search Interface that mimics the ImmPort CDT UI and facet on their specific

study descriptors
● Developed SeroNet specific Study Detail pages to display their study descriptors and vocabulary
● Extended the ImmPort search to include SeroNet specific descriptors in the free text search
● Extended the data release process to build OpenSearch indexes for SeroNet search
● Added navigation links between ImmPort CDT and SeroNet CDT

2.2.6.2.2. Architecture

2.2.6.2.3. Feature Summary

Developing the SeroNet Search Interface was a flexible Approach

● New field can be easily added

● SeroNet JSON file - contains all SeroNet Descriptors in a particular format

● Develop SeroNet Search Interface/ SeroNet Detail Page

○ Facet/Search on SeroNet descriptors

○ Fields will have SeroNet vocabulary

● Extend ImmPort Search Interface

○ Augment the ImmPort descriptors with SeroNet descriptors (do not fit in our data model) to better

search SeroNet studies (Under Exploration)

○ Point to SeroNet Search Interface when the user is querying for SeroNet studies

2.2.7. ImmPort S3 API

ImmPort S3 API is an Amazon API Gateway fully managed by AWS. It is a RESTful API created to read and write to
the JSON files stored on the AWS S3 buckets. The purpose of this API is to push updates to ImmPort web pages
outside their build cycles. For example, ImmPort announcements on the Shared Data home page are stored in a JSON
file on the S3 bucket, a new announcement will require only a JSON file update on the S3 bucket instead of a
complete build cycle of the software. AWS Lambda is employed for some of the endpoints to do any data processing
that is needed prior to returning the data to the user.

2.2.7.1. Feature Summary

Following are the endpoints available in ImmPort S3 API accessible at the URL https://s3.immport.org/

https://s3.immport.org/

2.2.7.2. ImmPort S3 API Server Architecture

The ImmPort Data API is hosted on an EC2 instance in the public subnet on AWS. The Aspera server is hosted on the
NIAID On-premises infrastructure.

2.2.8. ImmPort CloudFront Distributions

ImmPort configures Amazon CloudFront distributions to server HTTPS requests for the following two ImmPort S3
buckets.

1. downloads.dev.immport.org: Used for allowing users to download data upload templates and example
packages.

2. docs.immport.org: Used for Static website hosting of API documentation website.

Content is for public use on these S3 buckets.

2.2.9. Authentication of the Rest API - Resource Servers

The Rest APIs are OAuth 2.0 Resource Servers built using Spring Security 5. In the context of OAuth 2.0, a resource
server is an application that protects resources via OAuth tokens. These tokens are issued by an authorization server,
typically to a client application. The job of the resource server is to validate the token before serving a resource to the
client. JWT, or JSON Web Token is a way to transfer sensitive information securely in the widely-accepted JSON
format. The contained information could be about the user, or about the token itself, such as its expiry and issuer. To
visualize, let's look at a sequence diagram for the authorization code flow and see all the actors in action:

https://tools.ietf.org/html/rfc7519

2.2.10. Cell Ontology Browser

The Cell ontology browser was developed to support the visualization of the Cell Ontology
(http://obofoundry.org/ontology/cl.html), which is of great utility in the curation of ImmPort data for the
standardization of cell populations. The browser provides a force-directed graph visualization of the ontology, and
utilizes the same software stack (Angular, ElasticSearch, MySQL) as other ImmPort applications, to allow for
searching for Cell Ontology terms with the addition of D3 for the visualization component. The content is updated as
part of the ImmPort data release process.

2.2.10.1. Cell Ontology Browser Architecture

2.2.11. ImmuneXpresso

The ImmuneXpresso application was built under the BISC Contract Option 7 in years 2014-2015 and developed in
collaboration with the team at the Shen-Orr lab at Technion (http://shenorrlab.technion.ac.il/). ImmuneXpresso
continues the work of the Shen-Orr lab in mining PubMed abstracts to determine relationships between cells and
cytokines. The primary content is stored on a standalone EC2 hosting a MySQL database and accessible via a
RESTFul API. This EC2 instance is maintained by the Shen-Orr lab, and a black box to the ImmPort team. The
front-end technology follows the same design pattern as most single-page applications but was written before
frameworks like React and Angular were available. The code base is 5 years old and not updated to use the Angular
framework like other ImmPort applications. ImmuneXpresso term queries are supported by SOLR indexing of cell
and cytokine terms.

http://shenorrlab.technion.ac.il/

2.2.11.1. ImmuneXpresso Architecture

2.2.12. Galaxy

The original ImmPort Open application provided support for flow cytometry analysis primarily using the FLOCK
(FLOw Clustering without K) algorithm. During the current contract, we have chosen to utilize the popular analysis
workflow engine Galaxy (https://galaxyproject.org/) to optimize the modular method and component development
and eventual sharing of data and workflows. The use of a publicly available web analysis framework was chosen over

the direct replacement of existing code in ImmPort because of the existence of open-source tools that largely perform
the workflow capabilities of queuing, bursting, and chaining methods in a generic way and to reduce the cost to the
ImmPort development team when developing and maintaining code to perform those workflow capabilities.

Galaxy is an open, web-based platform for accessible, reproducible, and transparent computational research. The
ImmPort Galaxy platform is focused on providing tools for flow cytometry analysis. In addition to implementing
many R/BioConductor packages for flow cytometry analysis, the ImmPort team has written several modules to aid in
the visualization of the results. Below is a list of some of the tools available in the ImmPort Galaxy application:

● Clustergrammer
● Flock version 2 and 3
● flowAI
● flowCL
● flowDensity
● flowStats
● flowViz
● FlowSOM
● MetaCyto

The ImmPort Galaxy instance is hosted on an AWS EC instance and uses additional volumes to host the Galaxy file
system and an Aurora PostgreSQL instance to support the Galaxy database.

2.2.13. ImmuneSpace

ImmuneSpace, available at www.immunespace.org, was developed by the team at the Gottardo lab
(http://www.rglab.org) at Fred Hutchinson Cancer Center with the team at Labkey Software
(www.labkey.com) underfunding of the Human Immunology Project Consortium
(www.immuneprofiling.org). Details about the project are available at the ImmuneSpace site and the
architecture in the Labkey product pages. The ImmPort team provides hosting and basic IT services on AWS for
ImmuneSpace in the AWS instances funded by NIAID/DAIT.

2.2.14. Metrics

Elasticsearch and Kibana (EK) Stack on AWS is used for storing, searching, and visualizing log and metric data. This
allows for better searches and creates more analytical graphs for usage metrics. An Elasticsearch, Fluentd, and
Kibana (EFK) Stack was initially considered but we decided on the Elasticsearch, Metric Rest API, Kafka, Aurora
Mysql stack.

2.2.14.1. A common data model for Metrics

● A common JSON format was devised after looking at the various data elements of each of the different
applications so that it can be easily searched and visualized. The common format that was formulated was as
follows:
{
// common parameters
"metricId": “”,

"metricType": "",
"username": "",
"remoteIpAddress": "",
"organization": "",
"applicationName": "",
"endPoint": "",
"startTime": "",
"ngUser": "",
"dateCreated": "",
"createdBy": "",

###The parameters field is an object of data elements for the different applications. The different
applications will fill in the appropriate fields.
"parameters": {
"searchTerm": "", parameter for ImmPort shared data
"clinical": "Y",
…..
“fileName”: “” parameters for ImmPort Data Browser
“fileSize”: “”,
…..
“parentLevel” :””, parameters for ImmPort Ontology
“relationshipType” :””,
…...
“ageEvent”:””, parameters for ImmPort Data Query API
“expsampleAccession”:””,
….

}
}

● Historic metric data currently stored in CORE_IMMPORT was copied to the Metric Database on AWS
Aurora

● The current and historic data in the Metric Database on AWS Aurora was cleaned, validated and transformed
to the new format and stored in a new table in AWS Aurora MySQL database called metric_log which
conforms to the new format.

● Data from this table was extracted as JSON files and then sent to ElasticSearch.

2.2.14.2. Metrics Software Architecture

● REST has quickly become the de-facto standard for building web services because they’re easy to build and
consume. We built a Rest API to collect metrics from all ImmPort Applications so we have a central
application to collect metrics.

● The Metric Rest API endpoints require an authentication token for access. ImmPort Applications call the
writeMetric endpoint on the Metric Rest API which takes a metric object.

● The Metric API asynchronously sends the metric object to the Kafka messaging queue. This enables ImmPort
Applications to log the metric and immediately return. The method in the ImmPort Applications to call the
metric endpoint is also asynchronous. At no point will the ImmPort Applications be blocked due to logging.

● The Metric API is also a listener to the Kafka messaging queue. As soon as the queue receives a metric object
the listener calls the saveMetric endpoint to save the metric to the database.

● A cron job runs every 1 minute to check whether a new metric is saved to the database. If there are metrics
these rows are converted to a json object and sent to Elastic search

2.2.14.3. Visualizations in Kibana

Searching the metric logs and creating usage visualizations becomes easy since the data is stored in Elasticsearch

2.2.14.3.1. Example of the Discovery tab
ImmPort Data Browser and ImmPort Data Api usage

The figure above shows some of the fields of metrics collected for the data browser and data api, e.g., username,
organization,endPoint, study accession. Other fields that can be shown are filename,file count, file size, application
name, remote ip address of the user etc.

2.2.14.3.2. Example of the Visualization tab :

The above figure shows the top ten studies downloaded for the month of September.
Various types of visualizations and data can be aggregated in the ElasticSearch and Kibana stack.

2.2.15. Utilization Report

We have automated the Monthly ImmPort Utilization Report using Jupyter Notebook. A predefined Jinga template
has been created and the notebook populates the template with the specifics for that report.

The monthly information is currently pulled from either:

● The ImmPort Core Query API
● AWS Elasticsearch
● S3 bucket
● ImmPort Galaxy Postgres
● Google Analytics API

2.2.16. ImmPort HAPI FHIR Server

The FHIR project began with a mapping exercise between the fields of the ImmPort basic study design worksheet,

used to load new studies into ImmPort, to numerous FHIR resources. We started with FHIR 4.0.1 but found many

mappings missing or difficult to map to ResearchStudy. A subsequent review of FHIR 5.0.0 revealed the updates to

the ResearchStudy resource made mapping more straightforward. We followed with a comparison of FHIR mappings

from other systems (listed below) in an effort to identify variations and preferred approaches.

● ClinicalTrials.gov

● FHIR4FAIR

● KidsFirst (which was mapped to FHIR 4.0.1)

● dbGap

The comparison resulted in the identification of key FHIR resources for which we mapped each with as much detail

as possible. Please see the attached spreadsheet as well the worksheets named for each FHIR Resource. With this

detailed mapping in hand we developed Python code and Jinja2 templates for generating FHIR JSON resources from

the ImmPort Database. The Python code queries the appropriate tables and columns and adds them to a model

object used by the Jinja2 templates to populate a skeleton JSON file to generate FHIR resources. A sample of how we

mapped a resource is shown below.

A FHIR server was set up, using the open source HAPI FHIR reference implementation, to validate the FHIR resources

generated and to make the mapped data easily available for review by others. The Python code was modified to PUT

the resources to the FHIR server using ImmPort accession IDs as the ID.

This approach allows users to query the FHIR versions of the ImmPort shared studies and display the completed

mappings. Accession IDs allow users to query any given study using the FHIR API and the study accession ID like

https://fhir.immport.org/fhir/ResearchStudy/SDY1

https://fhir.immport.org/fhir/ResearchStudy/SDY1

2.3. Data Release
The ImmPort team currently produces 4 to 6 data releases per year. With each release additional studies are made
publicly available as well as updates made to previously existing shared studies. The process involves using
computers, data in file systems and an Oracle database in the NIAID OCICB environment, as well as an AWS Aurora
MySQL instance, S3 buckets, and software in the ImmPort AWS environment. The current contract mandates the
production database and data uploaded to ImmPort be hosted in the NIAID OCICB facility.

2.3.1. Overview of OCICB Components and Process

Steps to perform a data release are depicted above and outlined below. In this section we focus on how Study
packages, including the ALLSTUDIES package, are created as part of the data release process. We will not discuss
the initial step, executed by the Data Curation team, that identifies which studies are ready for public data sharing.

1. Create a DOI using the DataCite platform for new shared studies. New DOIs are uploaded to the production
database.

2. A Python process is run to construct the ALLSTUDIES package that includes all shared studies bundled into
a package suitable for loading into a MySQL database. The process runs on the Linux server and executes
code to extract information from the Oracle database which is used to create the ALLSTUDIES package. The
files created by this process are placed in the Staging file system.

3. The ALLSTUDIES package is used to populate a local MySQL database. This process ensures data extracted
matches the data we expect to be extracted for the data release. QC steps run scripts to measure whether table
row counts have increased from the previous release to the current release. Another script checks whether the
table structure of the previous data release matches the table structure of the current release, etc. The primary
QC check occurs when foreign keys are applied for each table as the final step in building the MySQL
database. If data has not been extracted properly foreign key violations arise requiring review before the data
release process can continue. The ALLSTUDIES package is placed in the Staging file system.

4. Once ALLSTUDIES data have been extracted properly another Python process is executed to extract
information from the Oracle database and construct an individual package for each study. During this step
result files for the new studies are copied from the Data_Mgt file system to the Shared_Data file system. The
study packages are placed in the Staging file system.

5. On the day of the release the current contents for the previous release are moved into their respective archive
directory on the Shared_Data file system. New content generated by Step 3 and Step 4 are moved into the
base directory on the Shared_Data file system for each study including the ALLSTUDIES package.

6. The Final step is to run the Python process to update the DataBrowser content making the new release files
available for public download

2.3.2. Overview of AWS Components and Process

Steps to perform a data release are depicted above and outlined below. This section focuses on the production
database and how files to support UI and ElasticSearch content are generated and deployed for use by API and UI.

1. Several views and materialized tables are created on top of the MySQL Shared_Data database to support the
UI and API.

2. When step 1 has been completed, the warehouse version of the database is copied and loaded into the DEV
and Production MySQL Aurora databases on AWS.

3. The next step is to generate JSON files containing static content for use by the UI, to display graphics, data
release notes, and to support indexing by Google for improved search engine optimization.

4. Files generated in step 3 are copied to the development AWS S3 buckets for QC testing and then, on the day
of the data release, copied to the production AWS S3 buckets.

5. A similar process is used to extract information from the MySQL database to prepare and load this
information into ElasticSearch. The development environment is loaded for QC testing and, on the day of the
data release, the production environment is loaded and indexed.

6. Another process is run to generate content to support site search which is also indexed using ElasticSearch.

2.4. ImmPort Continuous Integration and Continuous Delivery (CICD)

CI/CD pipelines are the first prerequisites of cloud-native microservices architecture development. Continuous
Integration (CI) enables continuous integration of source code into a single shared and easy to access repository.
Continuous Delivery (CD) enables continuous delivery of the code stored in the repository to production. CI/CD
creates a fast and effective process for getting a product to market and for releasing new features and bug fixes. These
pipelines also enable organizations to bridge the gap between developers and customers efficiently and to create
reliable, robust, and scalable applications.

The figure below depicts the CICD implementation architecture for the ImmPort applications hosted in the AWS
environments. This architecture applies to the AWS and NIAID development applications hosted in AWS and AWS
production applications hosted in AWS. Currently, the production and quality assurance applications at NIAID are
deployed manually, and ImmPort is actively working on setting up another similar CICD architecture at the NIAID
facility. We have installed standalone Jenkins servers in the development and production environments to run the
CICD pipelines to build, test, tag, publish, and deploy to EC2 instance using AWS managed CodeDeploy service.

The figure above depicts a typical CICD pipeline for an ImmPort application. The standalone Jenkins server continuously polls
for any code changes in the source code git repositories and triggers the underlying CICD pipeline for that repository. The
pipeline then clones the source code and builds and runs the unit tests. On successful execution of the unit tests, the repository is
tagged and a release artifact pushed to the Nexus artifact repository. Also, a Docker image is built and pushed to the Amazon
Elastic Container Registry (ECR) for applications deployed as docker containers. The pipeline then deploys the artifact or the
Docker image to the appropriate EC2 instance where the AWS CodeDeploy agent listens for instruction from the CodeDeploy
service configured in the Jenkins plugin. Finally, the ImmPort application deploys onto the EC2 instance and the application
restarts.

3. ImmPort OCICB
3.1. OVERVIEW
Most ImmPort public-facing applications are hosted using AWS infrastructure whereas operational applications and
databases are hosted by the Office of Cyber Infrastructure and Computational Biology(OCICB), which manages

technologies supporting NIAID biomedical research programs. Since 2011 the OCICB and ImmPort teams have
collaborated in the deployment and maintenance of applications in support of ImmPort operational activities.

The OCICB infrastructure supports Production and QA environments. Applications hosted at NIAID are primarily
focused on upload, management, QC, and curation of private data sets under embargo. This ensures private data sets
have the highest level of security and access controls, provided by the NIAID facility during the embargo period
when access to the data needs to be restricted to a limited set of users. When research and clinical data have been
curated and released from the embargo and shared with the larger user community, these data continue to be made
available to registered users using the Amazon Web Services (AWS) infrastructure.

3.1.1. Feature Summary

Capabilities/Features Capability/Feature Description
1 User Administration System administration capabilities include allowing users to request system

access (register), approve registration requests, create user accounts, update user
information, query user information, and deactivate users.

2 Log In/Off Authentication and authorization capabilities including allowing users to login,
logoff, and retrieve login information when the account or password is forgotten.

3 Manage NIAID/DAIT Programs Contract/grant management capabilities including creating, searching, deleting,
modifying, and viewing contracts and grants and assigning a PI for a contract or grant

4 Manage Research Project (RP)
/Private Project Workspace
(PPW)

Manage Research Projects (RP) including allowing a user designated as a PI or
PM on a grant to create a project and it’s associated RP and update the
information associated with the project, manage user access to the RP.

5 Manage Collaborative Project
(CP)

Manage the CP capabilities including allowing a user designated as a PI or PM on
a contract or grant to create a CP, update the information associated with the CP,
control user access to the CP, and share datasets in a CP.

6 Data Submission Batch loading of experimental data into a RP for multiple types of relevant metadata to
provide the minimum information for multiple experimental assay types.

Data Update Bulk editing of data

Data Management UI application for managing data

Data Sharing UI application to control the release of study information for public distribution

Database Audit History and
Archiving

Maintain a complete audit history of research data (including analysis toolset data
created) that is both updated and deleted. The audit history is defined as the ability to
capture "who", "what", and "when" of the data involved in a change or deletion to
Research data contained in the ImmPort System. Additionally, audit and collect limited
summary information with respect to auditing/tracking of user session activity on a
limited number of database areas. The focus is to obtain summary information on
system activity such as logins, information created and updated in the several areas of
the Administration Module, and usage of baseline Analysis Tools. Additionally, provide
the capability to audit and track user session log information.

Core Query API Provides programmatic access to the Core ImmPort Data

3.2. OCICB ARCHITECTURE
Drawing still in progress

3.3. DATABASE ARCHITECTURE
The ImmPort system database architecture is stored and maintained in an Oracle 17g Enterprise Edition
database utilizing Real Application Clusters (RAC), installed on a Linux EL7 operating system. Installed
database options include Oracle Partitioning, On-Line Analytical Processing (OLAP), and Oracle Data
Mining (ODM) options. The RAC environment provides necessary system load distribution and load
balancing, while at the same time providing system redundancy and failover capabilities.

In RAC, multiple active instances of the database server on different servers or processors can concurrently execute
transactions against a shared database. It allows large tasks to be divided into subtasks and distributed among
multiple nodes, which provides great efficiency. RAC automatically handles load balancing by distributing the load
on multiple nodes and also supports parallel processing of data on multiple nodes. This becomes critical when
handling the heavy processing loads required for many of the ImmPort analysis tools, or the large batch upload data
submissions. RAC inherently provides high availability by guaranteeing that the database system is operational as
long as one node in the cluster is up, and reliability by providing user-transparent transaction fail-over.

3.3.1. CORE_IMMPORT

3.3.1.1. Overview

The CORE_IMMPORT database is the primary operational database where all read/write activity occurs. Almost all
tables in this database include audit/editorial columns that track: date_created, created_by, data_last_updated and
last_updated_by. In addition, the CORE_IMMPORT database is mirrored by the CORE_IMMPORT_HIST
database, which tracks edits made to the tables in the CORE_IMMPORT database.

3.3.1.2. Workspace

The workspace tables are important components for the process of releasing private studies to the public. In
addition, they are used to control which users have access to individual rows in the database and the
workspace_2_user supports access control to a workspace and all the objects linked to that workspace. In the
workspace table there is a special workspace with workspace_id equal to zero. When rows from the base tables are
released to the public as part of the Data Release sharing process, rows for the objects being released are inserted
into the workspace_2_XXX table, with the workspace_id set to zero. This allows the ImmPort Data Release process
to use views that make sure only rows in the base tables, linked to the workspace_2_XXX table, are included in the
output.

3.3.1.3. Administrative

3.3.1.4. Study

3.3.1.5. Subject

3.3.1.6. Assessment

3.3.1.7. Lab Test

3.3.1.8. Experiment

3.3.1.9. Assay Results

3.3.1.10. Lookup Tables - Part 1

There are approximately 65 tables in the IMMPORT_CORE schema, that ImmPort calls lookup tables, but other
groups may refer to as controlled vocabulary tables. These tables are used to help harmonize the data from study to
study. For many of the base tables ImmPort has both a reported_name and preferred_name and the preferred name is
mapped to one of the lookup tables. In addition, several lookup tables are populated using terms from ontologies.

3.3.1.11. Lookup Tables - Part 2

3.3.1.12. Lookup Tables - Part 3

3.3.1.13. Lookup Tables - Part 4

3.3.1.14. Upload Registration

3.3.1.15. Curation

3.3.1.16. BISC Security

3.4. Aspera Server
We integrated technology from Aspera, an IBM company, into the ImmPort system architecture. The Aspera Connect
Server using the patented FASP® technology allows for optimized data transfer speeds across the Internet; we have
utilized this technology for data submission and data downloads for large files.

The Aspera security infrastructure provides user authentication and permissions on file systems. A free
Aspera Connect Client provides a plug-in for users to install locally to take advantage of the FASP® UDP

based transfer optimization. The Aspera SDK is utilized currently for accessing the Aspera Connect Server from the
ImmPort application and data submission servers to queue up transfer tasks and return results to users.

More detailed documentation regarding the Aspera Connect Server, the Aspera SDK, FASP® technology, and the
Aspera Connect Client can be found online at www.ibm.com/products/aspera.

3.5. HOSTED APPLICATIONS

3.5.1. ImmPort Core Query API

The Core Query API provides programmatic access to Core ImmPort Data. This API works as a SQL query tool to
access data in the relational database (Oracle). The API returns a tab delimited output by default. The Core Query
API endpoints can be accessed directly by a user or by an application. All requests to the Core Query API require
authentication and the Core Query API uses tokens for authentication. Users obtain tokens by posting to the ImmPort
Authentication URL https://auth.immport.org/auth/token with a username and password. They must include the
authentication token as an Authorization: bearer in the custom HTTP header.

3.5.1.1. Feature Summary

The primary function of the core query api as currently developed is to assist curators in executing and saving
database SQL queries that help with daily operational tasks in getting data collected, QC’ed, shared and curated.
Based on usefulness to the internal curation team, it can be evaluated over time if the application would also be useful
for external users.

The endpoints of the API are listed below

HTTP URL Parameters (pass in the body of the
request)

Description GET/POST

/query/delete/{queryID} Deletes the query with the specified
query id stored in the database

GET

/query/id/{queryId} Get backs the query object in json
format

GET

/query/all Gets all the query objects GET

/query/username/{username Gets all the query objects for the
specified username

GET

/query/add JSON Query Object Example : {

"queryName": "Study query",

"queryDescription": "study query",

"querySql": "select * from study

where study_accession =

'{study_accession}'"

}

Adding a query object to be stored in
the database

POST

query/update JSON Query Object Updating query object in the
database. The json object passed in

POST

https://www.ibm.com/products/aspera
https://auth.immport.org/auth/token

Example : {

"curationQueryId": 1150,

"querySql": "select * from study"

}

the object should have a
curationQueryId

/query/execute/{queryId} Example :

Url :

/query/execute//1198

Parameters: {

"study_accession":"SDY1"

}

Executes the sql query stored in the
database for the specified query id
with the parameters passed

POST

query/executeSql Example:

{

"querySql": "select * from study

where study_accession = 'SDY2'"

}

Executes the sql query passed as a
parameter

POST

3.5.1.2. ImmPort Core Query API Software Architecture

The purpose of this API is to execute SQL queries dynamically and return tab delimited results back. The execute
endpoint is called with a query id, the parameterized query is retrieved from the database and the parameters values
passed in the POST body are replaced in the query string. The executeSql endpoint has the SQL query that needs to
be executed in the body of the POST. The response to both endpoints are tab delimited results. The return columns
specified in the query can be of different types and column type is determined by the ResultSetMetaData from the
resultset when the query is executed. The fetch size is set to one so the results can be streamed to the response without
an overhead on the memory on the server where the application is running.

3.5.2. Data Submission

The ImmPort data collection and sharing process is the product of extensive interaction, discussion, prototyping, and
refinement with the DAIT POs, data providers and researchers who use the shared data. In order to encourage
standardization of terms and vocabulary the ImmPort team developed a set of templates to capture, name, and define
key elements of biomedical research data. The templates are informed by community standards where available. The
ImmPort team engages with data standards communities such as the HIPC Standards Working Group, ISA Tools,
CDISC, the minimal information standard groups, CEDAR, the Antibody Registry, and ontology developers to
explore how to enhance the description of data captured in the templates. Templates are provided in a Microsoft Excel
version to provide inline comments, validation, and ease-of-use features such as dropdown lists and color-coding of
related data fields. The operational version of the templates is a simple tab separated value format that is widely used
in bioinformatics.

Each template is fully documented consistent with the requirements of NIAID and the research community.
Explanations include the purpose of the template, structure of the template (e.g. section, column, and row names),
elements of the template required, whether numeric, preferred vocabulary or free text should be entered into a data
field, how data elements are linked to each other across templates, and a glossary of terms and their reference sources.
All templates, reference guides and example completed templates are version controlled and published when a
software release is deployed.

Detailed information on data submission and templates are available at
https://www.immport.org/resources/dataTemplates. Online interactive information for the templates is available at
https://www.immport.org/shared/templateDocumentation.

3.5.2.1. Validation

A Batch Upload consists of a single Template file or group of Template file(s) and zero or more data file(s) provided
in a zip-file or folder. Data files are either required by the template file(s) or designated as archive file(s). A Template
file is a self formatted file consisting of a header segment, column specification and data column rows. Batch upload
validation consists of validating all data in the set of templates and associated file before any data is uploaded into
Oracle database and ImmPort file system. If any data in a Batch Upload fails validation no data is uploaded into
Oracle database or file loaded into ImmPort file system by the the batch uploader. The set of all possible ImmPort
templates have a specific validation and upload order. That is, data in one template must be loaded into the Oracle
database prior to another template being uploaded since data in a latter template can depend upon data in a former
template. All data within a Batch Upload must be valid to be uploaded into the Oracle database and ImmPort file
system. Data in each template is uploaded into one or more Oracle database tables and files associated with the
template are uploaded into the ImmPort file system. The data in a Batch Upload is valid if all the foreign keys for the
set of Oracle tables to be loaded are satisfied and no duplicate rows are to be loaded into the set of Oracle database
tables. Data columns within a template are mapped to one or more Oracle database table(s) columns. Several of these
table columns are required to satisfy a controlled vocabulary. That is, the table column has a foreign key constraint to
a Oracle database (lookup) controlled vocabulary. The Oracle tables have other foreign key constraints defined
between the Oracle tables that provide parent-child relationships among the tables (for example,
experiment_accession in EXPSAMPLE is related to experiment_accession in experiment).

Validation requirements for each template are specified declaratively in XML. The XML specification provides the
following: declaration of row uniqueness, the specification of generation of unique ID's for table rows, parent-child
foreign key requirements, rules that must be satisfied on the template columns to be valid for upload, processes to
process template columns into database columns and make further checks, and controlled vocabulary checks. The
XML also specifies the mapping of template columns to database table(s) columns, and the specific validation queries
that support parent-child foreign key requirements. The XML specification is currently implemented in the Batch
Uploader Java software system.

A validation service, where no data is uploaded into the Oracle database or files are uploaded into ImmPort file
system, is provided through the Data Manager and Batch Upload API. The Data Manager uses Batch Upload API to
perform the validation.

3.5.2.2. Submission

Data Upload Submission is provided through the Data Manager and the Batch Uploader API. A Batch Upload
Submission submits the file or folder to the upload zone and registers the upload job as pending in the Oracle
database. The Batch Upload back-end server performs the validation as specified above and, if the upload is valid, it
loads the data into the Oracle database and associated file(s) into ImmPort file system. The back-end Batch Upload
server processes uploads through a cyclic basic (cron job). The submission process wakes every five (5) minutes and
processes all pending Batch Uploads in submission timestamp order. This allows upload submissions to depend on
one another.

https://www.immport.org/resources/dataTemplates
https://www.immport.org/shared/templateDocumentation

The software architecture of the Batch Uploader server provided below.

3.5.3. Data Batch Update

The Data Batch Updater provides the mechanism for updating Oracle database tables (update, delete, and insert
special linkages) after they have been uploaded by the Batch Uploader. The Data Batch Updater also allows for
management of controlled vocabulary (lookup) tables (insert, update, and delete). A Data Batch Updater upload
consists of a single formatted text-file that specifies an operation on a single Oracle database table that will perform
either updates, insertions, or deletions. As with the Batch Uploader the operations on the Oracle database tables are
specified declaratively in XML and implemented in the Data Batch Updater Java software system. The Batch Updater
does not affect columns in the Oracle database that specify path information for associated files residing in the
ImmPort file system. Also, the batch updater does not delete any row in an Oracle database table that contains
ImmPort file system path information (See File System Management Update).

3.5.3.1. Validation

As with the Batch Uploader, the Batch Updater performs a validation phase on the batch updater file. These
validations include: check duplicate rows by primary key or unique indices, check required columns, check foreign
keys on columns of rows being inserted or updated, and in the case of deletion that there are no foreign key linkages
involving the row being deleted with other Oracle database tables. If all validations are successful the updater file is
uploadable. A validation service, where no data is uploaded or modified in the Oracle database, is provided through
the Data Manager and Batch Updater API. The Data Manager uses Batch Updater API to perform the validation.

3.5.3.2. Submission

Batch Updater Submission is provided through the Data Manager or the Batch Updater API. The submission includes
putting the updater file into the upload zone and registering a pending Batch Updater job in the Oracle database. A
Data Batch Updater upload back-end server processes the pending Batch Updater jobs. The server validates the
updater job and, if validated, processes it into an Oracle database. The back-end Batch Updater server manages batch

update jobs through a cyclic (cron) process. The server wakes every five (5) minutes and processes all the pending
updater jobs in submission timestamp order. This allows updater submissions to depend on one another.

The software architecture of the Batch Updater server provided below.

3.5.4. File System Management Update

The File System Management Update Application manages updates to the Oracle database and ImmPort file system,
keeping the two consistent between each other. The File System Management Update Application performs the
following operations each identified as a single File System Management Update submission:
Remove Workspace
Remove Workspace operation removes the current content of Oracle database and the associated files in the ImmPort
file system specific to the workspace and leaves the workspace empty to be operated on again. An option allows the
workspace to be removed completely from the Oracle database and ImmPort file system. In the latter case the
workspace no longer exists in the ImmPort file system.
Remove Upload Ticket Number
Remove Upload Ticket Number removes all Oracle database table content and associated files in the ImmPort file
system related to the upload ticket. Only the recent completed upload ticket for a given workspace can be removed,
after which is it marked as deleted.
Remove Study
Remove Study removes all the Oracle database table content and associated files in ImmPort file system related to a
given study.
Remove File
For a given data file stored in the ImmPort file system (file info file (FILE_INFO.FILE_INFO_ID), protocol file
(PROTOCOL.PROTOCOL_ACCESSION), study file (STUDY_FILE.STUDY_FILE_ACCESSION), or study image
file (STUDY_IMAGE.SCHEMATIC_ACCESSION)), the file is removed from the ImmPort file system, and all
linkages to the file in Oracle database for file info and protocol files. Finally, the row in the associated table is
removed.
Remove Multiple Files

Remove multiple files requires a file comprising one line per ImmPort file system file to remove. Each line is
comprised of file ID: file_info_id (FILE_INFO), protocol_accesion (PROTOCOL), study_file_accession
(STUDY_FILE) , or schematic_accession (STUDY_IMAGE). All files must reside in the same workspace. The
operation performs Remove File for each file ID.
Move Archive Files
For files that are designated as archived and stored in FILE_INFO (file detail ::= Archived) can be moved to a result
file designation within a workspace. That is, the file can be associated with ASSESSMENT_PANEL
(ASSESSMENT_2_FILE_INFO), EXPSAMPLE (EXPSAMPLE_2_FILE_INFO), CONTROL_SAMPLE
(CONTROL_SAMPLE_2_FILE_INFO), or STANDARD_CURVE (STANDARD_CURVE_2_FILE_INFO). This
operation requires a tab-separated file as input that contains one or more line with the format: (FILE_INFO_ID,
ACCESSION, FILE_DETAIL). The FILE_DETAIL comes from the LK_FILE_DETAIL controlled vocabulary table.
If a given FILE_INFO_ID repeats in the file, then the set of ACCESSIONS associated with it must belong to the same
study, and the associated FILE_DETAIL must be the same. The ACCESSION must satisfy the accession format for
the following accessions respectively: ASSESSMENT_PANEL_ACCESSION, EXPSAMPLE_ACCESSION,
CONTROL_SAMPLE_ACCESSION, or STANDARD_CURVE_ACCESSION.
Transfer Files
The (result) files can be transferred from one study to another within a workspace. The operation takes a
tab-separated file where each line has the format: (FILE_ID, STUDY_ACCESSION). The FILE_ID can be one of the
following FILE_INFO_ID (FiLE_INFO), STUDY_FILE_ACCESSION (STUDY_FILE), or STUDY_IMAGE
(SCHEMATIC_ACCESSION). The STUDY_ACCESSION must differ from the study to which the FILE_ID is
currently associated.
Assign CRF Files
This operation transfers study-based file system files in STUDY_FILE and assigns them as a CRF-file to an
assessment panel in ASSESSMENT_2_FILE_INFO within the same study. That is, both the study file and assessment
panel are in the same study. The operation requires a tab-separated file with the following format:
(STUDY_FILE_ACCESSION, ASSESSMENT_PANEL_ACCESSION). All studies must reside within the same
workspace.
File System Management Update validates a given operation. Validation includes determining the existence of the
object(s) to be operated upon and the specific requirements of the operation. The File System Management Update
submission is accessed through the Data Manager that defines the above operations as a single submission. The
pending operation is stored in a scheduling table in the Oracle database and any associated file for the operation in the
upload zone. The back-end File System Management Update server is a cron process that wakes every five (5)
minutes and processes all the pending File System Management Update jobs in submission timestamp order. This
allows operation submissions to depend on one another.

The software architecture of the File System Management Server is provided below

3.5.5. Data Manager

The Data Management Server hosts the web application that provides users with the interfaces to submit, query, and
edit private research and clinical data to which they have access via a private workspace.

3.5.6. Sharing Tool

The Sharing tool hosts a web application designed to share study data from private workspaces to a collaborative
workspace and then to a public workspace. This tool is used during the study data release process. When a set of
studies is ready to be publicly shared or re-shared the following process is followed in the sharing tool.
A collaborative workspace is created by clicking on the Create Collaborative workspace menu.

The study to be shared is first shared to the newly created Collaborative workspace by clicking on the Share Study
button. Before you click the button you will get a report on the details of the study data that are to be shared. If the
study is being re-shared the Shared Count column will have non-zero counts indicating how many experiments or lab
tests or other study data have already been shared.

The Pre-Check button can be clicked to do some validations on the study data being shared.

Once the study data is shared to the Collaborative workspace, it can be shared to the Public workspace

All study data shared to the public workspace is exported to the Aurora MySQL database on AWS.

3.5.7. User Administration

The User Administration Server hosts the web application designed to manage user registrations, accounts, and
project access. The Manage User design artifacts model system administration capabilities which include allowing
users to request system access (register), creating user accounts, updating user information, querying users, assigning
groups and roles to users and deactivating users from the system. The User Administration Application is a Spring
boot application with its frontend coded in AngularJS.

3.5.7.1. Registering User

A user can register to gain access to ImmPort applications. By default the user is assigned the role “ROLE_USER”.
One of the access rights this role gives the user is access to the data browser application to download studies. The
individual initiates a registration request upon which the user sees the Notice

The system displays a page to gather information about the user. The username and email address are unique to the
system so the user cannot add a username or email address that already exists in the system. The system validates the
user information and saves the registration request, provided the data submitted are valid. Appropriate error messages
are displayed if errors are encountered.

An email is sent to the user to confirm the email address provided. This email contains a link the user needs to click to
activate the account.

3.5.7.2. Creating an User by an Administrator

The ImmPort Administrator can create a user and assign appropriate access roles. The admin fills in the appropriate
user information and clicks Create User

A user account is created and an email is sent to the user’s email address to set his password. When the user sets his
password , his account is activated.

The admin can continue to assign roles to the user. Since the admin selected Data Browser and Data API while
creating the user a normal user role is assigned for these applications.

3.5.7.3. Search User

A user can be searched by the username,first name, last name and email address. A user once found, can be
deactivated and his password can be reset. The admin can click on the Reset Password button and email will be sent to
the user’s email to reset his password.

3.5.7.4. Applications/Groups/Roles

A group is a means of organizing users whereas a role is usually a means of organising rights. Each role assigns some
access rights for an application. Roles are assigned to groups and groups are assigned to applications. For example
the User Service Rest API application has two roles REST_ADMIN and REST_USER. REST_ADMIN is assigned to
the REST_ADMINS group and REST_USER is assigned to REST_USERS group. If a user mod2021 needs access to
the User Service Rest API application as an admin the REST_ADMIN role needs to be assigned to the user. The user
will need to be associated with the Application REST and to the group REST_ADMINS. This will give the user
mod2021 access to the REST_ADMIN role.

3.5.8. APIs

The Batch Uploader and Batch Updater APIs provide programmatic access to the operational capabilities of the Batch
Uploader and Batch Updater. The API endpoints can be accessed directly by a user or by an application (for example,
Data Manager). All requests to these APIs require authentication. The Core APIs use tokens for authentication. Users
can obtain tokens by posting to the ImmPort Authentication URL- https://auth.immport.org/auth/token with a
username and password. They must include the authentication token as an Authorization: bearer in the custom HTTP
header.

3.5.8.1. Batch Uploader API

The endpoints of the Batch Uploader API are listed below.

HTTP URL Parameters (pass in the body of the request) Description GET/
POST

/data/upload/documentation/tem
plates/WORKSPACE_ID

Documentation Generation: Generate
documentation templates for a specific
workspace (WORKSPACE_ID)

GET

/data/upload/type/offline -F "workspaceId=WORKSPACE_ID"
-F "packageName=PACKAGE_NAME"
-F "uploadNotes=UPLOAD_NOTES"
-F "uploadPurpose=uploadData"
-F "serverName=SERVER_NAME"

OffLine File(s) Upload: Request for an off-line
upload; creates upload registration in preparation
for receipt of the file

POST

/data/upload/type/online -F "workspaceId=WORKSPACE_ID"
-F "packageName=
-F "uploadNotes=UPLOAD_NOTES"
-F "uploadPurpose=uploadData"
-F "serverName=SERVER_NAME
-F "file=@UPLOAD_ZIP_FILE_PATH_ON_CLIENT"

Zip-File Upload: Request upload of a zip-file;
transfers file and creates upload registration and
performs upload

POST

/data/upload/type/online -F "workspaceId=WORKSPACE_ID"
-F "packageName="
-F "uploadNotes=UPLOAD_NOTES"
-F "uploadPurpose=uploadData"
-F "serverName=SERVER_NAME"
-F "file=@UPLOAD_ZIP_FILE_PATH_ON_CLIENT"

Zip-File Upload: Request upload of a zip-file;
transfers file and creates upload registration and
performs upload

POST

/data/upload/type/online -F "workspaceId=WORKSPACE_ID"
-F "packageName=PACKAGE_NAME"
-F "uploadNotes=UPLOAD_NOTES"
-F "uploadPurpose=uploadData"
-F "serverName=SERVER_NAME
-F "file=@UPLOAD_FILE_PATH_ON_CLIENT"

Multiple Files Upload (Single File): Request
upload of a single file; transfers file and creates
upload registration and performs upload; Note
that single file is specified with the following -F
parameter, -F
"file=@UPLOAD_FILE_PATH_ON_CLIENT"

POST

/data/upload/type/online -F "workspaceId=WORKSPACE_ID"
-F "packageName=PACKAGE_NAME”
-F "uploadNotes=UPLOAD_NOTES"

Multiple Files Upload (Multiple Files): Request
upload of a several files; transfers files and
creates upload registration and performs upload;

POST

-F "uploadPurpose=uploadData"
-F "serverName=SERVER_NAME"
-F "file=@UPLOAD_FILE1_PATH_ON_CLIENT"
-F "file=@UPLOAD_FILE_PATH_ON_CLIENT
...

Note that each file is specified with the following
-F parameter, -F
"file=@UPLOAD_FILE_PATH_ON_CLIENT"

/data/upload/type/online -F "workspaceId=WORKSPACE_ID"
-F "packageName="
-F "uploadNotes=UPLOAD_NOTES"
-F "uploadPurpose=uploadData"
-F "serverName=SERVER_NAME
-F "file=@UPLOAD_ZIP_FILE_PATH_ON_CLIENT"

Zip-file Upload for Validation: Zip-file validation
is a two step process where the zip-file is
uploaded to the server and the upload registration
generated and then the validation is requested
(see Validation of a File)

POST

/data/upload/type/online -F "workspaceId=WORKSPACE_ID"
-F "packageName=PACKAGE_NAME"
-F "uploadNotes=UPLOAD_NOTES"
-F "uploadPurpose=validateData
-F "serverName=SERVER_NAME"
-F "file=@UPLOAD_FILE1_PATH_ON_CLIENT
-F "file=@UPLOAD_FILE_PATH_ON_CLIENT"
...

Multiple File Upload for Validation (Multiple
Files): Request upload of several files not as a
zip-file package; Note that each file is specified
with the following -F parameter, -F
"file=@UPLOAD_FILE_PATH_ON_CLIENT"

POST

/data/upload/validation -F "uploadTicketNumber=UPLOAD_TICKET_NUMBER” Validation of Upload Ticket: Validation of job
that is identified by the upload ticket number;
Note this endpoint uses the -F parameter, -F
"uploadTicketNumber=UPLOAD_TICKET_NU
MBER"

POST

/data/upload/registration/UPLO
AD_TICKET_NUMBER/status

Status of Upload Ticket: Return the current status
of an upload ticket
(UPLOAD_TICKET_NUMBER)

GET

/data/upload/registration/UPLO
AD_TICKET_NUMBER/report
s/summary

Summary Information on Upload Ticket: On
completed jobs (either Completed or Rejected),
provide the information on the upload ticket
(UPLOAD_TICKET_NUMBER)

GET

/data/upload/registration/UPLO
AD_TICKET_NUMBER/report
s/database

Database Information on Upload Ticket: On
completed jobs (Completed only) provide
database information
(UPLOAD_TICKET_NUMBER)

GET

/data/upload/registration/UPLO
AD_TICKET_NUMBER/report
s/database

Database Information on Upload Ticket: On
completed jobs (Completed only) provide
database information
(UPLOAD_TICKET_NUMBER)

GET

The software architecture for the Batch Upload API is similar to the ImmPort Core Query API

3.5.8.2. Batch Updater API

The endpoints of the Batch Updater API are listed below.

HTTP URL Parameters (pass in the body of the request) Description GET/
POST

/data/batch/updater/documentation/te
mplates

Documentation Generation:
Generate documentation
templates

GET

/data/batch/updater -F "workspaceId=WORKSPACE_ID"
-F "packageName=" -F "uploadNotes=UPLOAD_NOTES"
-F "uploadPurpose=batchUpdateUpload
-F "serverName=SERVER_NAME
-F "file=@UPLOAD_BATCH_UPDATER_FILE_PATH_ON_CLIENT"

Batch Update Upload: Request
upload of a zip-file; transfers file
and creates upload registration
and performs batch update
requested

POST

/data/batch/updater -F "workspaceId=WORKSPACE_ID"
-F "packageName=" -F "uploadNotes=UPLOAD_NOTES"
-F "uploadPurpose=batchUpdateValidate"
-F "serverName=SERVER_NAME"
-F "file=@UPLOAD_BATCH_UPDATER_FILE_PATH_ON_CLIENT"

Batch Update Upload for
Validation: Batch update
validation is a two step process
where the batch update file is
uploaded to the server and the
upload registration generated
(this endpoint), and then the
validation is requested (see
Validation of Upload Ticket
endpoint)

POST

/data/batch/updater/validation -F "uploadTicketNumber=UPLOAD_TICKET_NUMBER" Validation of Upload Ticket:
Validation a batch updater file
that is identified by the upload
ticket number; Note this endpoint
uses the -F parameter, -F
"uploadTicketNumber=UPLOAD
_TICKET_NUMBER"

POST

/data/batch/updater/registration/UPL
OAD_TICKET_NUMBER/status

Status of Upload Ticket: Return
the current status of an upload

GET

ticket
(UPLOAD_TICKET_NUMBER)

/data/batch/updater/registration/UPL
OAD_TICKET_NUMBER/summary

Summary Information on Upload
Ticket: On completed jobs (either
Completed or Rejected), provide
the information on the upload
ticket
(UPLOAD_TICKET_NUMBER)

GET

/data/batch/updater/registration/UPL
OAD_TICKET_NUMBER/database

Database Information on Upload
Ticket: On completed jobs
(Completed only) provide
database information
(UPLOAD_TICKET_NUMBER)

GET

/workspaces Set of Workspaces: Return the set
of workspace(s) on which a user
can perform and upload or
validation

GET

The software architecture for the Batch Upload API is similar to the ImmPort Core Query API

3.5.9. ImmPort Study Registration Wizard

To further streamline the data submission process, and address requests from our data providers to simplify data
uploads, an easy-to-use UI Wizard is under development.. The Study Registration Wizard (SRW) is an interactive and
intuitive tool for entering study data, validating data in real time and mapping terms reported to the standard ontology
terms. The SRW accelerates the process of data submission and motivates data providers to submit their studies to the
ImmPort repository in a timely manner. It also aids the process of storing their study data in the ImmPort repository
and the generation of an ImmPort Study Accession that can be reported in publications. Additionally, this tool

empowers end users to load their research data with little to no assistance from the ImmPort staff, enhancing the
scalability of uploads.

The figure below shows the data elements of a basic study design template as steps. The wizard takes the user through
the different steps required to register a study with ImmPort. Steps 1 to 8 are required data elements and step 9 are
optional data elements. Step 10 leads you to the page where you save the data or validate and submit for upload.

For additional assistance with uploads, SRW tutorials and documentation were integrated into the new
documentation site. A current view of the Study Registration Interface can be seen in the below figure

In the June 2022 software release the following functionalities were developed and deployed:
● Text box where users can enter their protocol information
● Support XLS and TSV options to upload row-level data for Planned visits, Inclusion/Exclusion,

Arm/Cohort.
● Updated definitions for fields
● Add interactive feedback buttons to collect user feedback

