DR56.1 DataRelease
Release Date: July 2025
New Studies: 13
Updated Studies: 16
New Studies
SDY3123: Immunogenicity and protective efficacy of an intranasal neuraminidase-based influenza virus vaccine adjuvanted with bacterial cell membrane-derived adjuvants | |||||||
Status: | New | ||||||
Description: | Here, the authors evaluated the local and systemic humoral and cellular immune responses to adjuvanted recombinant N1 NA. | ||||||
Program/Contract: |
|
||||||
DOI: | 10.21430/M3GKZBI89W | ||||||
Subjects: | 0 | ||||||
Study PI, contact: |
|
||||||
Publications: |
|
||||||
Resources: |
|
||||||
Assays: | None | ||||||
Clinical Assessments: | None |
SDY3128: Characterization of SARS-CoV-2 Spike mutations | ||||||||||||||||||||||||||||||||||||
Status: | New | |||||||||||||||||||||||||||||||||||
Description: | Here we show that serial passaging of USA-WA1/2020 strain in mouse lungs results in mouse-adapted SARS-CoV-2 (MA-SARS-CoV-2) with mutations in S, M, and N genes, and a twelve-nucleotide insertion in the S gene. | |||||||||||||||||||||||||||||||||||
Program/Contract: |
|
|||||||||||||||||||||||||||||||||||
DOI: | 10.21430/M301EUT53A | |||||||||||||||||||||||||||||||||||
Subjects: | 258 | |||||||||||||||||||||||||||||||||||
Study PI, contact: |
|
|||||||||||||||||||||||||||||||||||
Publications: |
|
|||||||||||||||||||||||||||||||||||
Resources: |
|
|||||||||||||||||||||||||||||||||||
Assays: |
|
|||||||||||||||||||||||||||||||||||
Clinical Assessments: |
|
SDY3135: SARS-CoV-2 mRNA Vaccines Elicit Different Responses in Immunologically Naive and Pre-Immune Humans | ||||||||||
Status: | New | |||||||||
Description: | As the COVID-19 pandemic continues, the authorization of vaccines for emergency use has been crucial in slowing down the rate of infection and transmission of the SARS-CoV-2 virus that causes COVID-19. In order to investigate the longitudinal serological responses to SARS-CoV-2 natural infection and vaccination, a large-scale, multi-year serosurveillance program entitled SPARTA (SARS SeroPrevalence and Respiratory Tract Assessment) was initiated at 4 locations in the U.S. The serological assay presented here measuring IgG binding to the SARS-CoV-2 receptor binding domain (RBD) detected antibodies elicited by SARS-CoV-2 infection or vaccination with a 95.5 percent sensitivity and a 95.9 percent specificity. We used this assay to screen more than 3100 participants and selected 20 previously infected pre-immune and 32 immunologically naive participants to analyze their antibody binding to RBD and viral neutralization (VN) responses following vaccination with two doses of either the Pfizer-BioNTech BNT162b2 or the Moderna mRNA-1273 vaccine. Vaccination not only elicited a more robust immune reaction than natural infection, but the level of neutralizing and anti-RBD antibody binding after vaccination is also significantly higher in pre-immune participants compared to immunologically naive participants (p less than 0.0033). Furthermore, the administration of the second vaccination did not further increase the neutralizing or binding antibody levels in pre-immune participants (p=0.69). However, approximately 46 percent of the immunologically naive participants required both vaccinations to seroconvert. | |||||||||
Program/Contract: |
|
|||||||||
DOI: | 10.21430/M3U0XLCFC1 | |||||||||
Subjects: | 74 | |||||||||
Study PI, contact: |
|
|||||||||
Publications: |
|
|||||||||
Resources: |
|
|||||||||
Assays: | None | |||||||||
Clinical Assessments: |
|
SDY3155: Mucosal vaccine-induced cross-reactive CD8+ T cells protect against SARS-CoV-2 XBB.1.5 respiratory tract infection | |||||||||||
Status: | New | ||||||||||
Description: | The investigators update the iNCOVACC vaccine, used in India, by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. | ||||||||||
Program/Contract: |
|
||||||||||
DOI: | 10.21430/M3BMG70SSV | ||||||||||
Subjects: | 352 | ||||||||||
Study PI, contact: |
|
||||||||||
Publications: |
|
||||||||||
Resources: |
|
||||||||||
Assays: |
|
||||||||||
Clinical Assessments: |
|
SDY3158: Transient inhibition of lysosomal functions potentiates nucleic acid vaccines | ||||||||||
Status: | New | |||||||||
Description: | Transient inhibition of lysosomal functions potentiates nucleic acid vaccines | |||||||||
Program/Contract: |
|
|||||||||
DOI: | 10.21430/M3RLL6JH3E | |||||||||
Subjects: | 0 | |||||||||
Study PI, contact: |
|
|||||||||
Publications: |
|
|||||||||
Resources: |
|
|||||||||
Assays: | None | |||||||||
Clinical Assessments: | None |
SDY3159: B cell somatic hypermutation following COVID-19 vaccination with Ad26.COV2.S | ||||||||||
Status: | New | |||||||||
Description: | The viral vector-based COVID-19 vaccine Ad26.COV2.S has been recommended by the WHO since 2021 and has been administered to over 200 million people. Prior studies have shown that Ad26.COV2.S in_x0002_duces durable neutralizing antibodies (NAbs) that increase in coverage of variants over time, even in the absence of boosting or infection. Here, we studied humoral responses following Ad26.COV2.S vacci_x0002_nation in individuals enrolled in the initial Phase 1/2a trial of Ad26.COV2.S in 2020. Through 8 months post vaccination, serum NAb responses increased to variants, including B.1.351 (Beta) and B.1.617.2 (Delta), without additional boosting or infection. The level of somatic hypermutation, measured by nucleotide changes in the VDJ region of the heavy and light antibody chains, increased in Spike-specific B cells. Highly mutated mAbs from these sequences neutralized more SARS-CoV-2 variants than less mutated compara_x0002_tors. These findings suggest that the increase in NAb breadth over time following Ad26.COV2.S vaccina_x0002_tion is mediated by affinity maturation. | |||||||||
Program/Contract: |
|
|||||||||
DOI: | 10.21430/M3LSPNAZB6 | |||||||||
Subjects: | 0 | |||||||||
Study PI, contact: |
|
|||||||||
Publications: |
|
|||||||||
Resources: |
|
|||||||||
Assays: | None | |||||||||
Clinical Assessments: | None |
SDY3160: Durability of immunity and clinical protection in nursing home residents following bivalent SARS-CoV-2 vaccination | |||||||||||||
Status: | New | ||||||||||||
Description: | Background: Bivalent SARS-CoV-2 vaccines were developed to counter increasing susceptibility to emerging SARSCoV-2 variants. We evaluated the durability of immunity and protection following first bivalent vaccination among nursing home residents. Methods: We evaluated anti-spike and neutralization titers from blood in 653 community nursing home residents before and after each monovalent booster, and a bivalent vaccine. Concurrent clinical outcomes were evaluated using electronic health record data from a separate cohort of 3783 residents of Veterans Affairs (VA) nursing homes who had received at least the primary series monovalent vaccination. Using target trial emulation, we compared VA residents who did and did not receive the bivalent vaccine to measure vaccine effectiveness against infection, hospitalization, and death. Findings: In the community cohort, Omicron BA.5 neutralization activity rose after each monovalent and bivalent booster vaccination regardless of prior infection history. Titers declined over time but six months post-bivalent vaccination, BA.5 neutralization persisted at detectable levels in 75% of infection-naive and 98% of prior-infected individuals. In the VA nursing home cohort, bivalent vaccine added effectiveness to monovalent booster vaccination by 18.5% for infection (95% confidence interval (CI) −5.6, 34.0%), and 29.2% for hospitalization or death (95% CI −14.2, 56.2%) over five months. | ||||||||||||
Program/Contract: |
|
||||||||||||
DOI: | 10.21430/M3TI74TSNW | ||||||||||||
Subjects: | 0 | ||||||||||||
Study PI, contact: |
|
||||||||||||
Publications: |
|
||||||||||||
Resources: |
|
||||||||||||
Assays: | None | ||||||||||||
Clinical Assessments: | None |
SDY3162: SARS-CoV-2-specific plasma cells are not durably established in the bone marrow long-lived compartment after mRNA vaccination | |||||||||||||
Status: | New | ||||||||||||
Description: | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines are effective at protecting from severe disease, but the protective antibodies wane rapidly even though SARS-CoV-2-specific plasma cells can be found in the bone marrow (BM). Here, to explore this paradox, we enrolled 19 healthy adults at 2.5–33 months after receipt of a SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus- or SARS-CoV-2-specific antibody-secreting cells (ASCs) in long-lived plasma cell (LLPC) and non-LLPC subsets within the BM. Only influenza- and tetanus-specific ASCs were readily detected in the LLPCs, whereas SARS-CoV-2 specificities were mostly absent. The ratios of non-LLPC:LLPC for influenza, tetanus and SARS-CoV-2 were 0.61, 0.44 and 29.07, respectively. In five patients with known PCR-proven history of recent infection and vaccination, SARS-CoV-2-specific ASCs were mostly absent from the LLPCs. We show similar results with measurement for secreted antibodies from BM ASC culture supernatant. While serum IgG titers specific for influenza and tetanus correlated with IgG LLPCs, serum IgG levels for SARS-CoV-2, which waned within 3–6 months after vaccination, were associated with IgG non-LLPCs. In all, our studies suggest that rapid waning of SARS-CoV-2-specific serum antibodies could be accounted for by the absence of BM LLPCs after these mRNA vaccines. | ||||||||||||
Program/Contract: |
|
||||||||||||
DOI: | 10.21430/M3IM4HDSIR | ||||||||||||
Subjects: | 0 | ||||||||||||
Study PI, contact: |
|
||||||||||||
Publications: |
|
||||||||||||
Resources: |
|
||||||||||||
Assays: | None | ||||||||||||
Clinical Assessments: | None |
SDY3164: Influenza vaccination response is associated with the DNA methylation of T cell pathways | |||||||
Status: | New | ||||||
Description: | Using multifactorial approach, the study explored the interaction between DNA methylation and the influenza vaccine response. Factors including age, BMI, and cell type proportions were evaluated, leading to the identification of key methylation sites associated with RIG-I signaling and genes involved in innate immunity ro viruses. The longitudinal study included a subset of 42 participants vaccinated with Fluzone, enrolled in UGA5 and had previously been part of the UGA4 season. | ||||||
Program/Contract: |
|
||||||
DOI: | 10.21430/M38DJZGGZY | ||||||
Subjects: | 0 | ||||||
Study PI, contact: |
|
||||||
Publications: |
|
||||||
Resources: |
|
||||||
Assays: | None | ||||||
Clinical Assessments: | None |
SDY3165: COBRA rHAs adjuvanted with Infectimune generate broadly protective antibody responses in animals | |||||||||||||||||||
Status: | New | ||||||||||||||||||
Description: | The goal of the study was to investigate whether the use of Infectimune combined with COBRA recombinant HA (rHA) proteins could increase the antibody response, compared to using the COBRA rHA alone, especially in mice with pre-existing influenza immunity. Animals were vaccinated with different doses of COBRA rHA to evalaute the dose-sparing effects of the adjuvant. COBRA rHA vaccines (with and without adjuvant) were also compared to vaccines using wild-type rHA proteins. Sera was collected from animals for serological assays, such as microneutralization, HAI and ELISA. Lung and nasal washes were colleted to determine the viral load by plaque assay. | ||||||||||||||||||
Program/Contract: |
|
||||||||||||||||||
DOI: | 10.21430/M3G9COVSH1 | ||||||||||||||||||
Subjects: | 73 | ||||||||||||||||||
Study PI, contact: |
|
||||||||||||||||||
Publications: |
|
||||||||||||||||||
Resources: |
|
||||||||||||||||||
Assays: | None | ||||||||||||||||||
Clinical Assessments: |
|
SDY3168: Transient anti-interferon autoantibodies in the airways are associated with recovery from COVID-19 | |||||||||||||
Status: | New | ||||||||||||
Description: | Pre-existing anti-interferon alpha (anti-IFN-α) autoantibodies in blood are associated with susceptibility to life-threatening coronavirus disease 2019 (COVID-19). However, it is unclear whether anti-IFN-α autoantibodies in the airways, the initial site of infection, can also determine disease outcomes. In this study, we developed a multiparameter technology, FlowBEAT, to Pre-existing anti-interferon alpha (anti-IFN-α) autoantibodies in blood are associated with susceptibility to life-threatening coronavirus disease 2019 (COVID-19). However, it is unclear whether anti-IFN-α autoantibodies in the airways, the initial site of infection, can also determine disease outcomes. In this study, we developed a multiparameter technology, FlowBEAT, to quantify and profile the isotypes of anti-severe acute respiratory syndrome coronavirus 2 (SARS_x0002_CoV-2) and anti-IFN-α antibodies in longitudinal samples collected over 20 months from the airways and blood of 125 donors spanning mild to severe COVID-19. We found that nasal IgA1 anti-IFN-α autoantibodies were induced post-infection onset in more than 70% of mild and moderate COVID-19 cases and were associated with robust anti-SARS-CoV-2 immunity, fewer symptoms, and efficient recovery. Nasal anti-IFN-α autoantibodies followed the peak of host IFN-α production and waned with disease recovery, revealing a regulated balance between IFN-α and anti-IFN-α response. In contrast, systemic IgG1 anti-IFN-α autoantibodies appeared later and were detected only in a subset of patients with elevated systemic inflammation and worsening symptoms. These data reveal a protective role for nasal anti-IFN-α in the immunopathology of COVID-19 and suggest that anti-IFN-α autoantibodies may serve a homeostatic function to regulate host IFN-α following viral infection in the respiratory mucosa. | ||||||||||||
Program/Contract: |
|
||||||||||||
DOI: | 10.21430/M3BAGG41K1 | ||||||||||||
Subjects: | 0 | ||||||||||||
Study PI, contact: |
|
||||||||||||
Publications: |
|
||||||||||||
Resources: |
|
||||||||||||
Assays: | None | ||||||||||||
Clinical Assessments: | None |
SDY3170: Causal Estimands for Analyses of Averted and Avertible Outcomes due to Infectious Disease Interventions | ||||||||||
Status: | New | |||||||||
Description: | During the coronavirus disease (COVID-19) pandemic, researchers attempted to estimate the number of averted and avertible outcomes due to vaccination campaigns to quantify public health impact. However, the estimands used in these analyses have not been previously formalized. It is also unclear how these analyses relate to the broader framework of direct, indirect, total, and overall causal effects under interference. Here, using potential outcome notation, we adjust the direct and overall effects to accommodate analyses of averted and avertible outcomes. We use this framework to interrogate the commonly held assumption that vaccine-averted outcomes via direct impact among vaccinated individuals (or vaccine-avertible outcomes via direct impact among unvaccinated individuals) is a lower bound on vaccine-averted (or -avertible) outcomes overall. To do so, we describe a susceptible-infected-recovered-death model stratified by vaccination status. When vaccine efficacies wane, the lower bound fails for vaccine-avertible outcomes. When transmission or fatality parameters increase over time, the lower bound fails for both vaccine-averted and -avertible outcomes. Only in the simplest scenario where vaccine efficacies, transmission, and fatality parameters are constant over time, outcomes averted via direct impact among vaccinated individuals (or outcomes avertible via direct impact among unvaccinated individuals) is a lower bound on overall impact. In conclusion, the lower bound can fail under common violations to assumptions on time-invariant vaccine efficacy, pathogen properties, or behavioral parameters. In real data analyses, estimating what seems like a lower bound on overall impact through estimating direct impact may be inadvisable without examining the directions of indirect effects | |||||||||
Program/Contract: |
|
|||||||||
DOI: | 10.21430/M3QTQ0FPKH | |||||||||
Subjects: | 0 | |||||||||
Study PI, contact: |
|
|||||||||
Publications: |
|
|||||||||
Resources: |
|
|||||||||
Assays: | None | |||||||||
Clinical Assessments: | None |
SDY3172: Pre-Existing Human Antibody Repertoire | ||||||||||
Status: | New | |||||||||
Description: | Not Provided | |||||||||
Program/Contract: |
|
|||||||||
DOI: | 10.21430/M3MZVV06R5 | |||||||||
Subjects: | 0 | |||||||||
Study PI, contact: |
|
|||||||||
Publications: |
|
|||||||||
Resources: |
|
|||||||||
Assays: | None | |||||||||
Clinical Assessments: | None |
Updated Studies
SDY1644: Urban Environmental Factors and Childhood Asthma (URECA) (ICAC-07) | ||||||||||||||||||||||||||||
Status: | Updated | |||||||||||||||||||||||||||
Description: | The purpose of this study is to determine the way environmental factors (like the components of inner-city household dust) affect immune system development and symptoms of asthma in inner city children. The study is divided into three periods, as the subjects age from birth to 10 years old. Each age bracket will explore different objectives and endpoints. Study Objectives/Hypotheses: Subjects age 0 to 3 years old: Environmental factors in the inner city adversely influence the development of the immune system to promote cytokine dysregulation, allergy, and recurrent wheezing by age 3. Children who have had a viral lower respiratory infection and have developed cytokine dysregulation by age 3 are at increased risk for the development of asthma by age 6. Subjects age 4 to 7 years old: There is a unique pattern of immune development that is driven by specific urban exposures in early life, and this pattern of immune development is characterized by: 1) impairment of antiviral responses and 2) accentuation of Th2-like responses (e.g. cockroach-specific Interleukin-13(IL-13)). The clinical effects of these changes in immune development are frequent virus-induced wheezing and allergic sensitization by 3-4 years of age, and these characteristics synergistically increase the risk of asthma at age 7 years. Subjects age 7 to 10 years old: There are unique combinations of environmental exposures (cockroach allergens, indoor pollutants [Environmental Tobacco Smoke (ETS) and Nitrogen Dioxide (NO2)], lack of microbial exposure), and family characteristics (stress, genetic factors related to innate immunity) that synergistically promote asthma onset, persistence, and morbidity in urban neighborhoods. These exposures and characteristics influence immune expression and lung development during critical periods of growth, resulting in specific asthma phenotypes. Subjects age 10 to 16 years old: To determine the wheezing, asthma and atopy phenotypes in minority children growing up in poor urban neighborhoods as they develop from birth through adolescence. | |||||||||||||||||||||||||||
Program/Contract: |
|
|||||||||||||||||||||||||||
DOI: | 10.21430/M3H1YHLR5Z | |||||||||||||||||||||||||||
Subjects: | 1218 | |||||||||||||||||||||||||||
Study PI, contact: |
|
|||||||||||||||||||||||||||
Publications: |
|
|||||||||||||||||||||||||||
Resources: | ||||||||||||||||||||||||||||
Assays: |
|
|||||||||||||||||||||||||||
Clinical Assessments: |
|
SDY2299: UFDI HIP | ||||||||||||||||||||||
Status: | Updated | |||||||||||||||||||||
Description: | Standardized flow cytometric immune profiling on peripheral blood from a cross-sectional cohort of T1D patients (N=240), their first-degree relatives (N=310), pre-T1D with two or more islet autoantibodies (N=24), and autoantibody negative healthy controls (N=252). | |||||||||||||||||||||
Program/Contract: |
|
|||||||||||||||||||||
DOI: | 10.21430/M3Y99ZG0JN | |||||||||||||||||||||
Subjects: | 826 | |||||||||||||||||||||
Study PI, contact: |
|
|||||||||||||||||||||
Publications: |
|
|||||||||||||||||||||
Resources: |
|
|||||||||||||||||||||
Assays: |
|
|||||||||||||||||||||
Clinical Assessments: | None |
SDY2320: Immunity induced by vaccination with recombinant influenza B virus neuraminidase protein breaks viral transmission chains in guinea pigs in an exposure intensity-dependent manner | |||||||
Status: | Updated | ||||||
Description: | The authors investigated if recombinant influenza virus neuraminidase (NA) vaccines delivered at a mucosal site could protect from onward transmission of influenza B viruses in the guinea pig model. | ||||||
Program/Contract: |
|
||||||
DOI: | 10.21430/M35P75OQ1V | ||||||
Subjects: | 84 | ||||||
Study PI, contact: |
|
||||||
Publications: |
|
||||||
Resources: |
|
||||||
Assays: |
|
||||||
Clinical Assessments: | None |
SDY2398: Mucosal antibody responses to SARS-CoV-2 booster vaccination and breakthrough infection | ||||||||||
Status: | Updated | |||||||||
Description: | Here, the investigators analyzed samples from the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2) study and measured serum IgG, saliva IgG and saliva secretory IgA responses in individuals who experienced breakthrough infections and who received COVID-19 mRNA booster vaccinations. | |||||||||
Program/Contract: |
|
|||||||||
DOI: | 10.21430/M3JDI4T17W | |||||||||
Subjects: | 111 | |||||||||
Study PI, contact: |
|
|||||||||
Publications: |
|
|||||||||
Resources: |
|
|||||||||
Assays: |
|
|||||||||
Clinical Assessments: | None |
SDY2412: The post-COVID-19 population has a high prevalence of cross-reactive antibodies to spikes from all Orthocoronavirinae genera | ||||||||||
Status: | Updated | |||||||||
Description: | Here, the investigators report that infection with and vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces broadly cross-reactive binding antibodies to spikes from a wide range of coronaviruses. | |||||||||
Program/Contract: |
|
|||||||||
DOI: | 10.21430/M3YZAEH2H6 | |||||||||
Subjects: | 118 | |||||||||
Study PI, contact: |
|
|||||||||
Publications: |
|
|||||||||
Resources: |
|
|||||||||
Assays: |
|
|||||||||
Clinical Assessments: |
|
SDY2466: SARS-CoV-2 BA.1 and BA.2 breakthrough infections boost antibody responses to early Omicron subvariants but not BQ.1.1 and XBB.1.5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Status: | Updated | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description: | Here, the authors describe the potency and breadth of neutralizing and binding antibody responses against a large panel of VOC following an Omicron BA.1 or BA.2 breakthrough infection in a heterogeneous cohort of individuals with diverse exposure histories. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Program/Contract: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.21430/m3qke0o5vy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Subjects: | 67 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Study PI, contact: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Publications: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Resources: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Assays: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Clinical Assessments: |
|
SDY2468: Kinetics and durability of humoral responses to SARS-CoV-2 infection and vaccination | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Status: | Updated | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description: | Using the PARIS longitudinal cohort, the authors determined the kinetics of antibody responses to spike protein after infections, during the primary immunization series, during monovalent and bivalent booster vaccination as well as during breakthrough infections. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Program/Contract: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.21430/M37GAKH32A | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Subjects: | 825 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Study PI, contact: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Publications: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Resources: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Assays: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Clinical Assessments: |
|
SDY2673: Next Generation Methodology for Updating Computationally Optimized Broadly Reactive Antigen (COBRA) HA Vaccines Against Emerging Human Seasonal Influenza A(H3N2) Viruses | ||||||||||
Status: | Updated | |||||||||
Description: | Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates. | |||||||||
Program/Contract: |
|
|||||||||
DOI: | 10.21430/M388O87C8Y | |||||||||
Subjects: | 274 | |||||||||
Study PI, contact: |
|
|||||||||
Publications: |
|
|||||||||
Resources: |
|
|||||||||
Assays: |
|
|||||||||
Clinical Assessments: | None |
SDY2751: Multi-subtype protection N1 Vaccination | |||||||
Status: | Updated | ||||||
Description: | Protection induced by vaccination with the computationally optimized broadly reactive NA antigen (N1-I COBRA NA) was characterized in both influenza serologically naive and pre-immune ferret models following H1N1 viral challenge. | ||||||
Program/Contract: |
|
||||||
DOI: | 10.21430/M3QYG9MI3P | ||||||
Subjects: | 195 | ||||||
Study PI, contact: |
|
||||||
Publications: |
|
||||||
Resources: |
|
||||||
Assays: | None | ||||||
Clinical Assessments: |
|
SDY2839: Advax adjuvanted COBRA vaccines | |||||||
Status: | Updated | ||||||
Description: | Evaluate the immune response induced by Advax-SM adjuvant in combination with broadly reactive influenza hemagglutinin (HA) vaccines in mouse model and to investigate how these responses elicit the most protective immune responses against H1N1 and H3N2 influenza viruses. | ||||||
Program/Contract: |
|
||||||
DOI: | 10.21430/M3UD76FFV9 | ||||||
Subjects: | 72 | ||||||
Study PI, contact: |
|
||||||
Publications: |
|
||||||
Resources: |
|
||||||
Assays: | None | ||||||
Clinical Assessments: |
|
SDY2943: Treg Adoptive Therapy in Subclinical Inflammation in Kidney Transplantation | ||||||||||||||||||||||||||||||||||||||||||||||||
Status: | Updated | |||||||||||||||||||||||||||||||||||||||||||||||
Description: | This is an open-label trial to determine the safety and efficacy of a single dose of autologous polyTregs in renal transplant recipients with SCI in the 3-7 months post-transplant allograft biopsy compared to control patients treated with CNI-based immunosuppression. The efficacy of the Treg therapy will be assessed by the reduction of graft inflammation on biopsies performed at 7 months after study group allocation compared to the eligibility biopsy. The original study design included an additional treatment arm with a single dose of darTregs. However, due to the inability to manufacture an adequate number of cells for infusion, this treatment arm was removed from the study in protocol version 9.0. One subject was treated in the darTreg arm and completed follow-up prior to the arm being removed from the protocol. The accrual goal for the study was reduced due to the removal of this arm as well as challenges associated with recruitment of participants in the setting of the COVID-19 pandemic. Given that this is primarily a pilot, proof-of-concept, we believe that the target of 7 evaluable participants in each arm is sufficient to provide the necessary clinical and mechanistic data that will allow us to assess the impact of polyTregs on graft inflammation. | |||||||||||||||||||||||||||||||||||||||||||||||
Program/Contract: |
|
|||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.21430/M36RLSSI99 | |||||||||||||||||||||||||||||||||||||||||||||||
Subjects: | 16 | |||||||||||||||||||||||||||||||||||||||||||||||
Study PI, contact: |
|
|||||||||||||||||||||||||||||||||||||||||||||||
Publications: | None | |||||||||||||||||||||||||||||||||||||||||||||||
Resources: |
|
|||||||||||||||||||||||||||||||||||||||||||||||
Assays: | None | |||||||||||||||||||||||||||||||||||||||||||||||
Clinical Assessments: |
|
SDY2944: Regulatory T Cell Modulation in Kidney Transplantation with Biologic Blockade of Dual Effector Pathways, CD28 and IL-6 | |||||||||||||||||||||||
Status: | Updated | ||||||||||||||||||||||
Description: | A significant problem that continues to challenge transplant physicians is the need to develop immunosuppression strategies that can usher in a tolerant state without the risks associated with conditioning regimens or the threat of graft versus host disease (GVHD) associated with infused stem cells. Other challenges include maintenance of the stability of the tolerant state and the availability of reproducible biomarkers for tolerance. Combining CD28 inhibition with blockade of other co-stimulation tracts or other co-activation pathways has been shown to induce long-term graft acceptance in experimental transplants (Kirk, 1997) (Larsen, 2005) (Zhao, 2012). Co-stimulation inhibition with CTLA4Ig or its second-generation sister drug, belatacept, inhibits T cell activation in vitro and induces anergy but neither agent by itself has been shown to induce tolerance in experimental or clinical organ transplantation (Larsen, 2005) (Kirk, 2014). While tolerance has been demonstrated only in small animals, based on the mechanism of action of IL6 and CTLA4-Ig, their combined inhibition may result in a Treg-mediated tolerogenic environment. CTOT-24 will use a novel therapeutic approach to combine anti-CD28 therapy using lulizumab pegol (BMS-931699) initially, followed by Belatacept, along with inhibition of the IL6 pathway by tocilizumab, an anti-IL6R monoclonal antibody. | ||||||||||||||||||||||
Program/Contract: |
|
||||||||||||||||||||||
DOI: | 10.21430/M3LLNPRDY9 | ||||||||||||||||||||||
Subjects: | 15 | ||||||||||||||||||||||
Study PI, contact: |
|
||||||||||||||||||||||
Publications: | None | ||||||||||||||||||||||
Resources: |
|
||||||||||||||||||||||
Assays: | None | ||||||||||||||||||||||
Clinical Assessments: |
|
SDY3079: COBRA N2 NA/NB vaccines and immune response | |||||||||||
Status: | Updated | ||||||||||
Description: | A recombinant COBRA N2 NA vaccine was used to elicit immune response in mice following an influenza challenge of SW/NC/15 and Kan/17. Hemagglutination-Inhibition (HAI) and influenza viral plaque assays were conducted using the mice sera samples to detect an increased antibody response that would prove more effective than current seasonal vaccines. | ||||||||||
Program/Contract: |
|
||||||||||
DOI: | 10.21430/M3BXRFFJK0 | ||||||||||
Subjects: | 223 | ||||||||||
Study PI, contact: |
|
||||||||||
Publications: |
|
||||||||||
Resources: |
|
||||||||||
Assays: |
|
||||||||||
Clinical Assessments: |
|
SDY3088: Innate and T-cellular immune responses to sequential vaccination with chimeric hemagglutinin split influenza virus vaccines in mice | |||||||||
Status: | Updated | ||||||||
Description: | The authors provide an in-depth characterization of the innate immune response and antigen-specific T-cellular immune response in mice. | ||||||||
Program/Contract: |
|
||||||||
DOI: | 10.21430/m3vqfcse7p | ||||||||
Subjects: | 112 | ||||||||
Study PI, contact: |
|
||||||||
Publications: |
|
||||||||
Resources: |
|
||||||||
Assays: |
|
||||||||
Clinical Assessments: | None |
SDY3097: Analysis of SARS-CoV-2 infection and vaccination in high risk participants. | |||||||
Status: | Updated | ||||||
Description: | The study analyzed SARS-CoV-2 vaccination and infections in High Risk participants in the LA-SPARTA cohort. Samples were collected (blood and saliva) and serological responses to the SARS-CoV-2, RBD, and NP were assessed via ELISA assay. Notably, Hispanic participants are at a higher risk of breakthrough infection than non-Hispanic participants among vaccinated individuals. | ||||||
Program/Contract: |
|
||||||
DOI: | 10.21430/m39ybc30zv | ||||||
Subjects: | 200 | ||||||
Study PI, contact: |
|
||||||
Publications: |
|
||||||
Resources: |
|
||||||
Assays: | None | ||||||
Clinical Assessments: | None |
SDY3119: Multivalent COBRA influenza vaccine elicits immune response in pre-immune ferrets | |||||||
Status: | Updated | ||||||
Description: | Investigation of the immune response and effectiveness of the next-generation hemagglutinin and neuraminidase proteins, designed using computationally optimized broadly reactive antigen (COBRA) methodology, in elderly ferrets. The animals were pre-immunized with Sing/86 and Pan/99 and prime-boost vaccinated with mixtures of COBRA-based influenza vaccines (J4, Y2, NG2, NG7, NG8, N1-I, and N2-B), and Infectimune adjuvant. The elderly ferrets were challenged with Tas/20; blood samples and nasal washes were collected for several analyses. | ||||||
Program/Contract: |
|
||||||
DOI: | 10.21430/m3bra9cso9 | ||||||
Subjects: | 36 | ||||||
Study PI, contact: |
|
||||||
Publications: |
|
||||||
Resources: |
|
||||||
Assays: | None | ||||||
Clinical Assessments: |
|